File size: 8,109 Bytes
1d409a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import numpy as np
from numpy.linalg import inv, lstsq
from numpy.linalg import matrix_rank as rank
from numpy.linalg import norm
class MatlabCp2tormException(Exception):
def __str__(self):
return 'In File {}:{}'.format(__file__, super.__str__(self))
def tformfwd(trans, uv):
"""
Function:
----------
apply affine transform 'trans' to uv
Parameters:
----------
@trans: 3x3 np.array
transform matrix
@uv: Kx2 np.array
each row is a pair of coordinates (x, y)
Returns:
----------
@xy: Kx2 np.array
each row is a pair of transformed coordinates (x, y)
"""
uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
xy = np.dot(uv, trans)
xy = xy[:, 0:-1]
return xy
def tforminv(trans, uv):
"""
Function:
----------
apply the inverse of affine transform 'trans' to uv
Parameters:
----------
@trans: 3x3 np.array
transform matrix
@uv: Kx2 np.array
each row is a pair of coordinates (x, y)
Returns:
----------
@xy: Kx2 np.array
each row is a pair of inverse-transformed coordinates (x, y)
"""
Tinv = inv(trans)
xy = tformfwd(Tinv, uv)
return xy
def findNonreflectiveSimilarity(uv, xy, options=None):
options = {'K': 2}
K = options['K']
M = xy.shape[0]
x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
X = np.vstack((tmp1, tmp2))
u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
U = np.vstack((u, v))
# We know that X * r = U
if rank(X) >= 2 * K:
r, _, _, _ = lstsq(X, U, rcond=-1)
r = np.squeeze(r)
else:
raise Exception('cp2tform:twoUniquePointsReq')
sc = r[0]
ss = r[1]
tx = r[2]
ty = r[3]
Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
T = inv(Tinv)
T[:, 2] = np.array([0, 0, 1])
return T, Tinv
def findSimilarity(uv, xy, options=None):
options = {'K': 2}
# uv = np.array(uv)
# xy = np.array(xy)
# Solve for trans1
trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
# Solve for trans2
# manually reflect the xy data across the Y-axis
xyR = xy
xyR[:, 0] = -1 * xyR[:, 0]
trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
# manually reflect the tform to undo the reflection done on xyR
TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
trans2 = np.dot(trans2r, TreflectY)
# Figure out if trans1 or trans2 is better
xy1 = tformfwd(trans1, uv)
norm1 = norm(xy1 - xy)
xy2 = tformfwd(trans2, uv)
norm2 = norm(xy2 - xy)
if norm1 <= norm2:
return trans1, trans1_inv
else:
trans2_inv = inv(trans2)
return trans2, trans2_inv
def get_similarity_transform(src_pts, dst_pts, reflective=True):
"""
Function:
----------
Find Similarity Transform Matrix 'trans':
u = src_pts[:, 0]
v = src_pts[:, 1]
x = dst_pts[:, 0]
y = dst_pts[:, 1]
[x, y, 1] = [u, v, 1] * trans
Parameters:
----------
@src_pts: Kx2 np.array
source points, each row is a pair of coordinates (x, y)
@dst_pts: Kx2 np.array
destination points, each row is a pair of transformed
coordinates (x, y)
@reflective: True or False
if True:
use reflective similarity transform
else:
use non-reflective similarity transform
Returns:
----------
@trans: 3x3 np.array
transform matrix from uv to xy
trans_inv: 3x3 np.array
inverse of trans, transform matrix from xy to uv
"""
if reflective:
trans, trans_inv = findSimilarity(src_pts, dst_pts)
else:
trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
return trans, trans_inv
def cvt_tform_mat_for_cv2(trans):
"""
Function:
----------
Convert Transform Matrix 'trans' into 'cv2_trans' which could be
directly used by cv2.warpAffine():
u = src_pts[:, 0]
v = src_pts[:, 1]
x = dst_pts[:, 0]
y = dst_pts[:, 1]
[x, y].T = cv_trans * [u, v, 1].T
Parameters:
----------
@trans: 3x3 np.array
transform matrix from uv to xy
Returns:
----------
@cv2_trans: 2x3 np.array
transform matrix from src_pts to dst_pts, could be directly used
for cv2.warpAffine()
"""
cv2_trans = trans[:, 0:2].T
return cv2_trans
def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
"""
Function:
----------
Find Similarity Transform Matrix 'cv2_trans' which could be
directly used by cv2.warpAffine():
u = src_pts[:, 0]
v = src_pts[:, 1]
x = dst_pts[:, 0]
y = dst_pts[:, 1]
[x, y].T = cv_trans * [u, v, 1].T
Parameters:
----------
@src_pts: Kx2 np.array
source points, each row is a pair of coordinates (x, y)
@dst_pts: Kx2 np.array
destination points, each row is a pair of transformed
coordinates (x, y)
reflective: True or False
if True:
use reflective similarity transform
else:
use non-reflective similarity transform
Returns:
----------
@cv2_trans: 2x3 np.array
transform matrix from src_pts to dst_pts, could be directly used
for cv2.warpAffine()
"""
trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
cv2_trans = cvt_tform_mat_for_cv2(trans)
return cv2_trans
if __name__ == '__main__':
"""
u = [0, 6, -2]
v = [0, 3, 5]
x = [-1, 0, 4]
y = [-1, -10, 4]
# In Matlab, run:
#
# uv = [u'; v'];
# xy = [x'; y'];
# tform_sim=cp2tform(uv,xy,'similarity');
#
# trans = tform_sim.tdata.T
# ans =
# -0.0764 -1.6190 0
# 1.6190 -0.0764 0
# -3.2156 0.0290 1.0000
# trans_inv = tform_sim.tdata.Tinv
# ans =
#
# -0.0291 0.6163 0
# -0.6163 -0.0291 0
# -0.0756 1.9826 1.0000
# xy_m=tformfwd(tform_sim, u,v)
#
# xy_m =
#
# -3.2156 0.0290
# 1.1833 -9.9143
# 5.0323 2.8853
# uv_m=tforminv(tform_sim, x,y)
#
# uv_m =
#
# 0.5698 1.3953
# 6.0872 2.2733
# -2.6570 4.3314
"""
u = [0, 6, -2]
v = [0, 3, 5]
x = [-1, 0, 4]
y = [-1, -10, 4]
uv = np.array((u, v)).T
xy = np.array((x, y)).T
print('\n--->uv:')
print(uv)
print('\n--->xy:')
print(xy)
trans, trans_inv = get_similarity_transform(uv, xy)
print('\n--->trans matrix:')
print(trans)
print('\n--->trans_inv matrix:')
print(trans_inv)
print('\n---> apply transform to uv')
print('\nxy_m = uv_augmented * trans')
uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
xy_m = np.dot(uv_aug, trans)
print(xy_m)
print('\nxy_m = tformfwd(trans, uv)')
xy_m = tformfwd(trans, uv)
print(xy_m)
print('\n---> apply inverse transform to xy')
print('\nuv_m = xy_augmented * trans_inv')
xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
uv_m = np.dot(xy_aug, trans_inv)
print(uv_m)
print('\nuv_m = tformfwd(trans_inv, xy)')
uv_m = tformfwd(trans_inv, xy)
print(uv_m)
uv_m = tforminv(trans, xy)
print('\nuv_m = tforminv(trans, xy)')
print(uv_m)
|