File size: 21,276 Bytes
4049862 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
from __future__ import annotations
from typing import TYPE_CHECKING, List
import logging
import json
import commentjson as cjson
import os
import sys
import requests
import urllib3
import traceback
from tqdm import tqdm
import colorama
from duckduckgo_search import ddg
import asyncio
import aiohttp
from enum import Enum
from .presets import *
from .llama_func import *
from .utils import *
from . import shared
from .config import retrieve_proxy
class ModelType(Enum):
Unknown = -1
OpenAI = 0
ChatGLM = 1
LLaMA = 2
XMChat = 3
@classmethod
def get_type(cls, model_name: str):
model_type = None
model_name_lower = model_name.lower()
if "gpt" in model_name_lower:
model_type = ModelType.OpenAI
elif "chatglm" in model_name_lower:
model_type = ModelType.ChatGLM
elif "llama" in model_name_lower or "alpaca" in model_name_lower:
model_type = ModelType.LLaMA
elif "xmchat" in model_name_lower:
model_type = ModelType.XMChat
else:
model_type = ModelType.Unknown
return model_type
class BaseLLMModel:
def __init__(
self,
model_name,
system_prompt="",
temperature=1.0,
top_p=1.0,
n_choices=1,
stop=None,
max_generation_token=None,
presence_penalty=0,
frequency_penalty=0,
logit_bias=None,
user="",
) -> None:
self.history = []
self.all_token_counts = []
self.model_name = model_name
self.model_type = ModelType.get_type(model_name)
try:
self.token_upper_limit = MODEL_TOKEN_LIMIT[model_name]
except KeyError:
self.token_upper_limit = DEFAULT_TOKEN_LIMIT
self.interrupted = False
self.system_prompt = system_prompt
self.api_key = None
self.need_api_key = False
self.single_turn = False
self.temperature = temperature
self.top_p = top_p
self.n_choices = n_choices
self.stop_sequence = stop
self.max_generation_token = None
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.logit_bias = logit_bias
self.user_identifier = user
def get_answer_stream_iter(self):
"""stream predict, need to be implemented
conversations are stored in self.history, with the most recent question, in OpenAI format
should return a generator, each time give the next word (str) in the answer
"""
logging.warning("stream predict not implemented, using at once predict instead")
response, _ = self.get_answer_at_once()
yield response
def get_answer_at_once(self):
"""predict at once, need to be implemented
conversations are stored in self.history, with the most recent question, in OpenAI format
Should return:
the answer (str)
total token count (int)
"""
logging.warning("at once predict not implemented, using stream predict instead")
response_iter = self.get_answer_stream_iter()
count = 0
for response in response_iter:
count += 1
return response, sum(self.all_token_counts) + count
def billing_info(self):
"""get billing infomation, inplement if needed"""
logging.warning("billing info not implemented, using default")
return BILLING_NOT_APPLICABLE_MSG
def count_token(self, user_input):
"""get token count from input, implement if needed"""
logging.warning("token count not implemented, using default")
return len(user_input)
def stream_next_chatbot(self, inputs, chatbot, fake_input=None, display_append=""):
def get_return_value():
return chatbot, status_text
status_text = i18n("开始实时传输回答……")
if fake_input:
chatbot.append((fake_input, ""))
else:
chatbot.append((inputs, ""))
user_token_count = self.count_token(inputs)
self.all_token_counts.append(user_token_count)
logging.debug(f"输入token计数: {user_token_count}")
stream_iter = self.get_answer_stream_iter()
for partial_text in stream_iter:
chatbot[-1] = (chatbot[-1][0], partial_text + display_append)
self.all_token_counts[-1] += 1
status_text = self.token_message()
yield get_return_value()
if self.interrupted:
self.recover()
break
self.history.append(construct_assistant(partial_text))
def next_chatbot_at_once(self, inputs, chatbot, fake_input=None, display_append=""):
if fake_input:
chatbot.append((fake_input, ""))
else:
chatbot.append((inputs, ""))
if fake_input is not None:
user_token_count = self.count_token(fake_input)
else:
user_token_count = self.count_token(inputs)
self.all_token_counts.append(user_token_count)
ai_reply, total_token_count = self.get_answer_at_once()
self.history.append(construct_assistant(ai_reply))
if fake_input is not None:
self.history[-2] = construct_user(fake_input)
chatbot[-1] = (chatbot[-1][0], ai_reply + display_append)
if fake_input is not None:
self.all_token_counts[-1] += count_token(construct_assistant(ai_reply))
else:
self.all_token_counts[-1] = total_token_count - sum(self.all_token_counts)
status_text = self.token_message()
return chatbot, status_text
def handle_file_upload(self, files, chatbot):
"""if the model accepts multi modal input, implement this function"""
status = gr.Markdown.update()
if files:
construct_index(self.api_key, file_src=files)
status = "索引构建完成"
return gr.Files.update(), chatbot, status
def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot):
fake_inputs = None
display_append = []
limited_context = False
fake_inputs = real_inputs
if files:
from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery
from llama_index.indices.query.schema import QueryBundle
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.chat_models import ChatOpenAI
from llama_index import (
GPTSimpleVectorIndex,
ServiceContext,
LangchainEmbedding,
OpenAIEmbedding,
)
limited_context = True
msg = "加载索引中……"
logging.info(msg)
# yield chatbot + [(inputs, "")], msg
index = construct_index(self.api_key, file_src=files)
assert index is not None, "获取索引失败"
msg = "索引获取成功,生成回答中……"
logging.info(msg)
if local_embedding or self.model_type != ModelType.OpenAI:
embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2"))
else:
embed_model = OpenAIEmbedding()
# yield chatbot + [(inputs, "")], msg
with retrieve_proxy():
prompt_helper = PromptHelper(
max_input_size=4096,
num_output=5,
max_chunk_overlap=20,
chunk_size_limit=600,
)
from llama_index import ServiceContext
service_context = ServiceContext.from_defaults(
prompt_helper=prompt_helper, embed_model=embed_model
)
query_object = GPTVectorStoreIndexQuery(
index.index_struct,
service_context=service_context,
similarity_top_k=5,
vector_store=index._vector_store,
docstore=index._docstore,
)
query_bundle = QueryBundle(real_inputs)
nodes = query_object.retrieve(query_bundle)
reference_results = [n.node.text for n in nodes]
reference_results = add_source_numbers(reference_results, use_source=False)
display_append = add_details(reference_results)
display_append = "\n\n" + "".join(display_append)
real_inputs = (
replace_today(PROMPT_TEMPLATE)
.replace("{query_str}", real_inputs)
.replace("{context_str}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
elif use_websearch:
limited_context = True
search_results = ddg(real_inputs, max_results=5)
reference_results = []
for idx, result in enumerate(search_results):
logging.debug(f"搜索结果{idx + 1}:{result}")
domain_name = urllib3.util.parse_url(result["href"]).host
reference_results.append([result["body"], result["href"]])
display_append.append(
# f"{idx+1}. [{domain_name}]({result['href']})\n"
f"<li><a href=\"{result['href']}\" target=\"_blank\">{domain_name}</a></li>\n"
)
reference_results = add_source_numbers(reference_results)
display_append = "<ol>\n\n" + "".join(display_append) + "</ol>"
real_inputs = (
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
.replace("{query}", real_inputs)
.replace("{web_results}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
else:
display_append = ""
return limited_context, fake_inputs, display_append, real_inputs, chatbot
def predict(
self,
inputs,
chatbot,
stream=False,
use_websearch=False,
files=None,
reply_language="中文",
should_check_token_count=True,
): # repetition_penalty, top_k
status_text = "开始生成回答……"
logging.info(
"输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL
)
if should_check_token_count:
yield chatbot + [(inputs, "")], status_text
if reply_language == "跟随问题语言(不稳定)":
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."
limited_context, fake_inputs, display_append, inputs, chatbot = self.prepare_inputs(real_inputs=inputs, use_websearch=use_websearch, files=files, reply_language=reply_language, chatbot=chatbot)
yield chatbot + [(fake_inputs, "")], status_text
if (
self.need_api_key and
self.api_key is None
and not shared.state.multi_api_key
):
status_text = STANDARD_ERROR_MSG + NO_APIKEY_MSG
logging.info(status_text)
chatbot.append((inputs, ""))
if len(self.history) == 0:
self.history.append(construct_user(inputs))
self.history.append("")
self.all_token_counts.append(0)
else:
self.history[-2] = construct_user(inputs)
yield chatbot + [(inputs, "")], status_text
return
elif len(inputs.strip()) == 0:
status_text = STANDARD_ERROR_MSG + NO_INPUT_MSG
logging.info(status_text)
yield chatbot + [(inputs, "")], status_text
return
if self.single_turn:
self.history = []
self.all_token_counts = []
self.history.append(construct_user(inputs))
try:
if stream:
logging.debug("使用流式传输")
iter = self.stream_next_chatbot(
inputs,
chatbot,
fake_input=fake_inputs,
display_append=display_append,
)
for chatbot, status_text in iter:
yield chatbot, status_text
else:
logging.debug("不使用流式传输")
chatbot, status_text = self.next_chatbot_at_once(
inputs,
chatbot,
fake_input=fake_inputs,
display_append=display_append,
)
yield chatbot, status_text
except Exception as e:
traceback.print_exc()
status_text = STANDARD_ERROR_MSG + str(e)
yield chatbot, status_text
if len(self.history) > 1 and self.history[-1]["content"] != inputs:
logging.info(
"回答为:"
+ colorama.Fore.BLUE
+ f"{self.history[-1]['content']}"
+ colorama.Style.RESET_ALL
)
if limited_context:
# self.history = self.history[-4:]
# self.all_token_counts = self.all_token_counts[-2:]
self.history = []
self.all_token_counts = []
max_token = self.token_upper_limit - TOKEN_OFFSET
if sum(self.all_token_counts) > max_token and should_check_token_count:
count = 0
while (
sum(self.all_token_counts)
> self.token_upper_limit * REDUCE_TOKEN_FACTOR
and sum(self.all_token_counts) > 0
):
count += 1
del self.all_token_counts[0]
del self.history[:2]
logging.info(status_text)
status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话"
yield chatbot, status_text
def retry(
self,
chatbot,
stream=False,
use_websearch=False,
files=None,
reply_language="中文",
):
logging.debug("重试中……")
if len(self.history) > 0:
inputs = self.history[-2]["content"]
del self.history[-2:]
self.all_token_counts.pop()
elif len(chatbot) > 0:
inputs = chatbot[-1][0]
else:
yield chatbot, f"{STANDARD_ERROR_MSG}上下文是空的"
return
iter = self.predict(
inputs,
chatbot,
stream=stream,
use_websearch=use_websearch,
files=files,
reply_language=reply_language,
)
for x in iter:
yield x
logging.debug("重试完毕")
# def reduce_token_size(self, chatbot):
# logging.info("开始减少token数量……")
# chatbot, status_text = self.next_chatbot_at_once(
# summarize_prompt,
# chatbot
# )
# max_token_count = self.token_upper_limit * REDUCE_TOKEN_FACTOR
# num_chat = find_n(self.all_token_counts, max_token_count)
# logging.info(f"previous_token_count: {self.all_token_counts}, keeping {num_chat} chats")
# chatbot = chatbot[:-1]
# self.history = self.history[-2*num_chat:] if num_chat > 0 else []
# self.all_token_counts = self.all_token_counts[-num_chat:] if num_chat > 0 else []
# msg = f"保留了最近{num_chat}轮对话"
# logging.info(msg)
# logging.info("减少token数量完毕")
# return chatbot, msg + "," + self.token_message(self.all_token_counts if len(self.all_token_counts) > 0 else [0])
def interrupt(self):
self.interrupted = True
def recover(self):
self.interrupted = False
def set_token_upper_limit(self, new_upper_limit):
self.token_upper_limit = new_upper_limit
print(f"token上限设置为{new_upper_limit}")
def set_temperature(self, new_temperature):
self.temperature = new_temperature
def set_top_p(self, new_top_p):
self.top_p = new_top_p
def set_n_choices(self, new_n_choices):
self.n_choices = new_n_choices
def set_stop_sequence(self, new_stop_sequence: str):
new_stop_sequence = new_stop_sequence.split(",")
self.stop_sequence = new_stop_sequence
def set_max_tokens(self, new_max_tokens):
self.max_generation_token = new_max_tokens
def set_presence_penalty(self, new_presence_penalty):
self.presence_penalty = new_presence_penalty
def set_frequency_penalty(self, new_frequency_penalty):
self.frequency_penalty = new_frequency_penalty
def set_logit_bias(self, logit_bias):
logit_bias = logit_bias.split()
bias_map = {}
encoding = tiktoken.get_encoding("cl100k_base")
for line in logit_bias:
word, bias_amount = line.split(":")
if word:
for token in encoding.encode(word):
bias_map[token] = float(bias_amount)
self.logit_bias = bias_map
def set_user_identifier(self, new_user_identifier):
self.user_identifier = new_user_identifier
def set_system_prompt(self, new_system_prompt):
self.system_prompt = new_system_prompt
def set_key(self, new_access_key):
self.api_key = new_access_key.strip()
msg = i18n("API密钥更改为了") + hide_middle_chars(self.api_key)
logging.info(msg)
return self.api_key, msg
def set_single_turn(self, new_single_turn):
self.single_turn = new_single_turn
def reset(self):
self.history = []
self.all_token_counts = []
self.interrupted = False
return [], self.token_message([0])
def delete_first_conversation(self):
if self.history:
del self.history[:2]
del self.all_token_counts[0]
return self.token_message()
def delete_last_conversation(self, chatbot):
if len(chatbot) > 0 and STANDARD_ERROR_MSG in chatbot[-1][1]:
msg = "由于包含报错信息,只删除chatbot记录"
chatbot.pop()
return chatbot, self.history
if len(self.history) > 0:
self.history.pop()
self.history.pop()
if len(chatbot) > 0:
msg = "删除了一组chatbot对话"
chatbot.pop()
if len(self.all_token_counts) > 0:
msg = "删除了一组对话的token计数记录"
self.all_token_counts.pop()
msg = "删除了一组对话"
return chatbot, msg
def token_message(self, token_lst=None):
if token_lst is None:
token_lst = self.all_token_counts
token_sum = 0
for i in range(len(token_lst)):
token_sum += sum(token_lst[: i + 1])
return i18n("Token 计数: ") + f"{sum(token_lst)}" + i18n(",本次对话累计消耗了 ") + f"{token_sum} tokens"
def save_chat_history(self, filename, chatbot, user_name):
if filename == "":
return
if not filename.endswith(".json"):
filename += ".json"
return save_file(filename, self.system_prompt, self.history, chatbot, user_name)
def export_markdown(self, filename, chatbot, user_name):
if filename == "":
return
if not filename.endswith(".md"):
filename += ".md"
return save_file(filename, self.system_prompt, self.history, chatbot, user_name)
def load_chat_history(self, filename, chatbot, user_name):
logging.debug(f"{user_name} 加载对话历史中……")
if type(filename) != str:
filename = filename.name
try:
with open(os.path.join(HISTORY_DIR, user_name, filename), "r") as f:
json_s = json.load(f)
try:
if type(json_s["history"][0]) == str:
logging.info("历史记录格式为旧版,正在转换……")
new_history = []
for index, item in enumerate(json_s["history"]):
if index % 2 == 0:
new_history.append(construct_user(item))
else:
new_history.append(construct_assistant(item))
json_s["history"] = new_history
logging.info(new_history)
except:
# 没有对话历史
pass
logging.debug(f"{user_name} 加载对话历史完毕")
self.history = json_s["history"]
return filename, json_s["system"], json_s["chatbot"]
except FileNotFoundError:
logging.warning(f"{user_name} 没有找到对话历史文件,不执行任何操作")
return filename, self.system_prompt, chatbot
def like(self):
"""like the last response, implement if needed
"""
return gr.update()
def dislike(self):
"""dislike the last response, implement if needed
"""
return gr.update()
|