File size: 48,399 Bytes
a43ef32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch OPT model."""
import random
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from transformers.models.opt.configuration_opt import OPTConfig


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
_CONFIG_FOR_DOC = "OPTConfig"
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"

# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]

# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ArthurZ/opt-350m-dummy-sc"
_SEQ_CLASS_EXPECTED_LOSS = 1.71
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'"

# QuestionAnswering docstring
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
_QA_EXPECTED_LOSS = 7.41
_QA_TARGET_START_INDEX = 14
_QA_TARGET_END_INDEX = 15

OPT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "facebook/opt-125m",
    "facebook/opt-350m",
    "facebook/opt-1.3b",
    "facebook/opt-2.7b",
    "facebook/opt-6.7b",
    "facebook/opt-13b",
    "facebook/opt-30b",
    # See all OPT models at https://huggingface.co/models?filter=opt
]


def _make_causal_mask(

    input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0

):
    """

    Make causal mask used for bi-directional self-attention.

    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min))
    mask_cond = torch.arange(mask.size(-1))
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat(
            [torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1
        )
    return mask[None, None, :, :].expand(
        bsz, 1, tgt_len, tgt_len + past_key_values_length
    )


def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """

    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.

    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(
        inverted_mask.to(torch.bool), torch.finfo(dtype).min
    )


class OPTLearnedPositionalEmbedding(nn.Embedding):
    """

    This module learns positional embeddings up to a fixed maximum size.

    """

    def __init__(self, num_embeddings: int, embedding_dim: int):
        # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
        # and adjust num_embeddings appropriately. Other models don't have this hack
        self.offset = 2
        super().__init__(num_embeddings + self.offset, embedding_dim)

    def forward(

        self, attention_mask: torch.LongTensor, past_key_values_length: int = 0

    ):
        """`input_ids_shape` is expected to be [bsz x seqlen]."""
        attention_mask = attention_mask.long()

        # create positions depending on attention_mask
        positions = (
            torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask
        ).long() - 1

        # cut positions if `past_key_values_length` is > 0
        positions = positions[:, past_key_values_length:]

        return super().forward(positions + self.offset)


class OPTAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(

        self,

        embed_dim: int,

        num_heads: int,

        dropout: float = 0.0,

        is_decoder: bool = False,

        bias: bool = True,

    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        self.scaling = self.head_dim**-0.5
        self.is_decoder = is_decoder

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return (
            tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
            .transpose(1, 2)
            .contiguous()
        )

    def forward(

        self,

        hidden_states: torch.Tensor,

        key_value_states: Optional[torch.Tensor] = None,

        past_key_value: Optional[Tuple[torch.Tensor]] = None,

        attention_mask: Optional[torch.Tensor] = None,

        layer_head_mask: Optional[torch.Tensor] = None,

        output_attentions: bool = False,

    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None

        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = (
                attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
                + attention_mask
            )
            attn_weights = torch.max(
                attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
            )
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        # upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
        if attn_weights.dtype == torch.float16:
            attn_weights = nn.functional.softmax(
                attn_weights, dim=-1, dtype=torch.float32
            ).to(torch.float16)
        else:
            attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                    f" {layer_head_mask.size()}"
                )
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(
                bsz, self.num_heads, tgt_len, src_len
            )
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if output_attentions:
            # this operation is a bit awkward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to be reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(
                bsz, self.num_heads, tgt_len, src_len
            )
            attn_weights = attn_weights_reshaped.view(
                bsz * self.num_heads, tgt_len, src_len
            )
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(
            attn_weights, p=self.dropout, training=self.training
        )

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned aross GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped, past_key_value


class OPTDecoderLayer(nn.Module):
    def __init__(self, config: OPTConfig):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.self_attn = OPTAttention(
            embed_dim=self.embed_dim,
            num_heads=config.num_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
        )
        self.do_layer_norm_before = config.do_layer_norm_before
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim)
        self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(

        self,

        hidden_states: torch.Tensor,

        attention_mask: Optional[torch.Tensor] = None,

        layer_head_mask: Optional[torch.Tensor] = None,

        output_attentions: Optional[bool] = False,

        use_cache: Optional[bool] = False,

        past_key_value: Optional[Tuple[torch.Tensor]] = None,

    ) -> Tuple[
        torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
    ]:
        """

        Args:

            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`

            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size

                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.

            layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size

                `(encoder_attention_heads,)`.

            output_attentions (`bool`, *optional*):

                Whether or not to return the attentions tensors of all attention layers. See `attentions` under

                returned tensors for more detail.

            use_cache (`bool`, *optional*):

                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding

                (see `past_key_values`).

            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states

        """

        residual = hidden_states

        # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
        if self.do_layer_norm_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=past_key_value,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = nn.functional.dropout(
            hidden_states, p=self.dropout, training=self.training
        )
        hidden_states = residual + hidden_states

        # 350m applies layer norm AFTER attention
        if not self.do_layer_norm_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)

        # Fully Connected
        hidden_states_shape = hidden_states.shape
        hidden_states = hidden_states.reshape(-1, hidden_states.size(-1))
        residual = hidden_states

        # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
        if self.do_layer_norm_before:
            hidden_states = self.final_layer_norm(hidden_states)

        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)

        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(
            hidden_states, p=self.dropout, training=self.training
        )

        hidden_states = (residual + hidden_states).view(hidden_states_shape)

        # 350m applies layer norm AFTER attention
        if not self.do_layer_norm_before:
            hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


OPT_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the

    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads

    etc.)



    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.

    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage

    and behavior.



    Parameters:

        config ([`OPTConfig`]):

            Model configuration class with all the parameters of the model. Initializing with a config file does not

            load the weights associated with the model, only the configuration. Check out the

            [`~PreTrainedModel.from_pretrained`] method to load the model weights.

"""


@add_start_docstrings(

    "The bare OPT Model outputting raw hidden-states without any specific head on top.",

    OPT_START_DOCSTRING,

)
class OPTPreTrainedModel(PreTrainedModel):

    config_class = OPTConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["OPTDecoderLayer"]
    _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]

    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (OPTDecoder)):
            module.gradient_checkpointing = value


OPT_INPUTS_DOCSTRING = r"""

    Args:

        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):

            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide

            it.



            Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and

            [`PreTrainedTokenizer.__call__`] for details.



            [What are input IDs?](../glossary#input-ids)

        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:



            - 1 for tokens that are **not masked**,

            - 0 for tokens that are **masked**.



            [What are attention masks?](../glossary#attention-mask)



            Indices can be obtained using [`OPTTokenizer`]. See [`PreTrainedTokenizer.encode`] and

            [`PreTrainedTokenizer.__call__`] for details.



            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see

            `past_key_values`).



            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]

            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more

            information on the default strategy.

        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):

            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:



            - 1 indicates the head is **not masked**,

            - 0 indicates the head is **masked**.



        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):

            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape

            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape

            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.



            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention

            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.



            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that

            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all

            `decoder_input_ids` of shape `(batch_size, sequence_length)`.

        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):

            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This

            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the

            model's internal embedding lookup matrix.

        use_cache (`bool`, *optional*):

            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see

            `past_key_values`).

        output_attentions (`bool`, *optional*):

            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned

            tensors for more detail.

        output_hidden_states (`bool`, *optional*):

            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for

            more detail.

        return_dict (`bool`, *optional*):

            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.

"""


class OPTDecoder(OPTPreTrainedModel):
    """

    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`]



    Args:

        config: OPTConfig

    """

    def __init__(self, config: OPTConfig):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(
            config.vocab_size, config.word_embed_proj_dim, self.padding_idx
        )
        self.embed_positions = OPTLearnedPositionalEmbedding(
            config.max_position_embeddings, config.hidden_size
        )

        if config.word_embed_proj_dim != config.hidden_size:
            self.project_out = nn.Linear(
                config.hidden_size, config.word_embed_proj_dim, bias=False
            )
        else:
            self.project_out = None

        if config.word_embed_proj_dim != config.hidden_size:
            self.project_in = nn.Linear(
                config.word_embed_proj_dim, config.hidden_size, bias=False
            )
        else:
            self.project_in = None

        # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
        # with checkpoints that have been fine-tuned before transformers v4.20.1
        # see https://github.com/facebookresearch/metaseq/pull/164
        if config.do_layer_norm_before and not config._remove_final_layer_norm:
            self.final_layer_norm = nn.LayerNorm(config.hidden_size)
        else:
            self.final_layer_norm = None

        self.layers = nn.ModuleList(
            [OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]
        )

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
    def _prepare_decoder_attention_mask(

        self, attention_mask, input_shape, inputs_embeds, past_key_values_length

    ):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                inputs_embeds.dtype,
                past_key_values_length=past_key_values_length,
            ).to(inputs_embeds.device)

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(
                attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
            ).to(inputs_embeds.device)
            combined_attention_mask = (
                expanded_attn_mask
                if combined_attention_mask is None
                else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    def forward(

        self,

        input_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        head_mask: Optional[torch.Tensor] = None,

        past_key_values: Optional[List[torch.FloatTensor]] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        query_embeds: Optional[torch.FloatTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

    ) -> Union[Tuple, BaseModelOutputWithPast]:
        r"""

        Args:

            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):

                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you

                provide it.



                Indices can be obtained using [`OPTTokenizer`]. See [`PreTrainedTokenizer.encode`] and

                [`PreTrainedTokenizer.__call__`] for details.



                [What are input IDs?](../glossary#input-ids)

            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:



                - 1 for tokens that are **not masked**,

                - 0 for tokens that are **masked**.



                [What are attention masks?](../glossary#attention-mask)

            head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):

                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:



                - 1 indicates the head is **not masked**,

                - 0 indicates the head is **masked**.



            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):

                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of

                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of



                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the

                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.



                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those

                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of

                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.



            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):

                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.

                This is useful if you want more control over how to convert `input_ids` indices into associated vectors

                than the model's internal embedding lookup matrix.

            output_attentions (`bool`, *optional*):

                Whether or not to return the attentions tensors of all attention layers. See `attentions` under

                returned tensors for more detail.

            output_hidden_states (`bool`, *optional*):

                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors

                for more detail.

            return_dict (`bool`, *optional*):

                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.

        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError(
                "You have to specify either decoder_input_ids or decoder_inputs_embeds"
            )

        past_key_values_length = (
            past_key_values[0][0].shape[2] if past_key_values is not None else 0
        )

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if query_embeds is not None:
            inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
            input_shape = inputs_embeds.size()[:-1]

        # embed positions
        if attention_mask is None:
            attention_mask = torch.ones(
                inputs_embeds.shape[:2], dtype=torch.bool, device=inputs_embeds.device
            )
        pos_embeds = self.embed_positions(attention_mask, past_key_values_length)

        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask, input_shape, inputs_embeds, past_key_values_length
        )

        if self.project_in is not None:
            inputs_embeds = self.project_in(inputs_embeds)

        hidden_states = inputs_embeds + pos_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        # check if head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
            if attn_mask is not None:
                if attn_mask.size()[0] != (len(self.layers)):
                    raise ValueError(
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                        f" {head_mask.size()[0]}."
                    )

        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):
                continue

            past_key_value = (
                past_key_values[idx] if past_key_values is not None else None
            )

            if self.gradient_checkpointing and self.training:

                if use_cache:
                    logger.warning(
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, None)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    head_mask[idx] if head_mask is not None else None,
                    None,
                )
            else:

                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        if self.final_layer_norm is not None:
            hidden_states = self.final_layer_norm(hidden_states)

        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
                if v is not None
            )
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


@add_start_docstrings(

    "The bare OPT Model outputting raw hidden-states without any specific head on top.",

    OPT_START_DOCSTRING,

)
class OPTModel(OPTPreTrainedModel):
    def __init__(self, config: OPTConfig):
        super().__init__(config)
        self.decoder = OPTDecoder(config)
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.decoder.embed_tokens

    def set_input_embeddings(self, value):
        self.decoder.embed_tokens = value

    def get_decoder(self):
        return self.decoder

    @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(

        processor_class=_TOKENIZER_FOR_DOC,

        checkpoint=_CHECKPOINT_FOR_DOC,

        output_type=BaseModelOutputWithPast,

        config_class=_CONFIG_FOR_DOC,

        expected_output=_EXPECTED_OUTPUT_SHAPE,

    )
    def forward(

        self,

        input_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        head_mask: Optional[torch.Tensor] = None,

        past_key_values: Optional[List[torch.FloatTensor]] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        query_embeds: Optional[torch.FloatTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

    ) -> Union[Tuple, BaseModelOutputWithPast]:

        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            query_embeds=query_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs

        return BaseModelOutputWithPast(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            hidden_states=decoder_outputs.hidden_states,
            attentions=decoder_outputs.attentions,
        )


class OPTForCausalLM(OPTPreTrainedModel):
    _keys_to_ignore_on_load_missing = [r"lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = OPTModel(config)

        # the lm_head weight is automatically tied to the embed tokens weight
        self.lm_head = nn.Linear(
            config.word_embed_proj_dim, config.vocab_size, bias=False
        )

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.decoder.embed_tokens

    def set_input_embeddings(self, value):
        self.model.decoder.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model.decoder = decoder

    def get_decoder(self):
        return self.model.decoder

    @replace_return_docstrings(

        output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC

    )
    def forward(

        self,

        input_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        head_mask: Optional[torch.Tensor] = None,

        past_key_values: Optional[List[torch.FloatTensor]] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        query_embeds: Optional[torch.FloatTensor] = None,

        labels: Optional[torch.LongTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

        reduction: Optional[str] = "mean",

    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""

        Args:

            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):

                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you

                provide it.



                Indices can be obtained using [`OPTTokenizer`]. See [`PreTrainedTokenizer.encode`] and

                [`PreTrainedTokenizer.__call__`] for details.



                [What are input IDs?](../glossary#input-ids)

            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:



                - 1 for tokens that are **not masked**,

                - 0 for tokens that are **masked**.



                [What are attention masks?](../glossary#attention-mask)

            head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):

                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:



                - 1 indicates the head is **not masked**,

                - 0 indicates the head is **masked**.



            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):

                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of

                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of

                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional

                tensors are only required when the model is used as a decoder in a Sequence to Sequence model.



                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the

                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.



                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those

                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of

                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.

            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):

                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.

                This is useful if you want more control over how to convert `input_ids` indices into associated vectors

                than the model's internal embedding lookup matrix.

            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,

                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored

                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            use_cache (`bool`, *optional*):

                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding

                (see `past_key_values`).

            output_attentions (`bool`, *optional*):

                Whether or not to return the attentions tensors of all attention layers. See `attentions` under

                returned tensors for more detail.

            output_hidden_states (`bool`, *optional*):

                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors

                for more detail.

            return_dict (`bool`, *optional*):

                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.



        Returns:



        Example:



        ```python

        >>> from transformers import GPT2Tokenizer, OPTForCausalLM



        >>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")

        >>> tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-350m")



        >>> prompt = "Hey, are you consciours? Can you talk to me?"

        >>> inputs = tokenizer(prompt, return_tensors="pt")



        >>> # Generate

        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)

        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

        "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."

        ```"""

        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            query_embeds=query_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = self.lm_head(outputs[0]).contiguous()

        loss = None
        if labels is not None:
            logits = logits[:, -labels.size(1) :, :]

            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(reduction=reduction)
            loss = loss_fct(
                shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)
            )
            if reduction == "none":
                loss = loss.view(shift_logits.size(0), -1).sum(1)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(

        self,

        input_ids=None,

        query_embeds=None,

        past=None,

        attention_mask=None,

        use_cache=None,

        **kwargs,

    ):
        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            if input_ids is not None:
                attention_mask = input_ids.new_ones(input_ids.shape)
        if past:
            input_ids = input_ids[:, -1:]
            query_embeds = None
        # first step, decoder_cached_states are empty
        return {
            "input_ids": input_ids,
            "query_embeds": query_embeds,
            "attention_mask": attention_mask,
            "past_key_values": past,
            "use_cache": use_cache,
        }

    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = ()
        for layer_past in past:
            reordered_past += (
                tuple(
                    past_state.index_select(0, beam_idx) for past_state in layer_past
                ),
            )
        return reordered_past