File size: 13,948 Bytes
3f0529e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import typing as T
from dataclasses import dataclass
from functools import partial

import torch
import torch.nn as nn
from torch import nn
from torch.nn import LayerNorm

import esm
from esm import Alphabet
from esm.esmfold.v1.categorical_mixture import categorical_lddt
from esm.esmfold.v1.misc import (
    batch_encode_sequences,
    collate_dense_tensors,
    output_to_pdb,
)
from esm.esmfold.v1.trunk import FoldingTrunk, FoldingTrunkConfig
from openfold.data.data_transforms import make_atom14_masks
from openfold.np import residue_constants
from openfold.utils.loss import compute_predicted_aligned_error, compute_tm


@dataclass
class ESMFoldConfig:
    trunk: T.Any = FoldingTrunkConfig()
    lddt_head_hid_dim: int = 128


load_fn = esm.pretrained.load_model_and_alphabet
esm_registry = {
    "esm2_8M": partial(load_fn, "esm2_t6_8M_UR50D_500K"),
    "esm2_8M_270K": esm.pretrained.esm2_t6_8M_UR50D,
    "esm2_35M": partial(load_fn, "esm2_t12_35M_UR50D_500K"),
    "esm2_35M_270K": esm.pretrained.esm2_t12_35M_UR50D,
    "esm2_150M": partial(load_fn, "esm2_t30_150M_UR50D_500K"),
    "esm2_150M_270K": partial(load_fn, "esm2_t30_150M_UR50D_270K"),
    "esm2_650M": esm.pretrained.esm2_t33_650M_UR50D,
    "esm2_650M_270K": partial(load_fn, "esm2_t33_650M_270K_UR50D"),
    "esm2_3B": esm.pretrained.esm2_t36_3B_UR50D,
    "esm2_3B_270K": partial(load_fn, "esm2_t36_3B_UR50D_500K"),
    "esm2_15B": esm.pretrained.esm2_t48_15B_UR50D,
}


class ESMFold(nn.Module):
    def __init__(self, esmfold_config=None, **kwargs):
        super().__init__()

        self.cfg = esmfold_config if esmfold_config else ESMFoldConfig(**kwargs)
        cfg = self.cfg

        self.distogram_bins = 64

        self.esm, self.esm_dict = esm_registry.get(cfg.esm_type)()

        self.esm.requires_grad_(False)
        self.esm.half()

        self.esm_feats = self.esm.embed_dim
        self.esm_attns = self.esm.num_layers * self.esm.attention_heads
        self.register_buffer("af2_to_esm", ESMFold._af2_to_esm(self.esm_dict))
        self.esm_s_combine = nn.Parameter(torch.zeros(self.esm.num_layers + 1))

        c_s = cfg.trunk.sequence_state_dim
        c_z = cfg.trunk.pairwise_state_dim

        self.esm_s_mlp = nn.Sequential(
            LayerNorm(self.esm_feats),
            nn.Linear(self.esm_feats, c_s),
            nn.ReLU(),
            nn.Linear(c_s, c_s),
        )
        if cfg.use_esm_attn_map:
            self.esm_z_mlp = nn.Sequential(
                LayerNorm(self.esm_attns),
                nn.Linear(self.esm_attns, c_z),
                nn.ReLU(),
                nn.Linear(c_z, c_z),
            )

        # 0 is padding, N is unknown residues, N + 1 is mask.
        self.n_tokens_embed = residue_constants.restype_num + 3
        self.pad_idx = 0
        self.unk_idx = self.n_tokens_embed - 2
        self.mask_idx = self.n_tokens_embed - 1
        self.embedding = nn.Embedding(self.n_tokens_embed, c_s, padding_idx=0)

        self.trunk = FoldingTrunk(**cfg.trunk)

        self.distogram_head = nn.Linear(c_z, self.distogram_bins)
        self.ptm_head = nn.Linear(c_z, self.distogram_bins)
        self.lm_head = nn.Linear(c_s, self.n_tokens_embed)
        self.lddt_bins = 50
        self.lddt_head = nn.Sequential(
            nn.LayerNorm(cfg.trunk.structure_module.c_s),
            nn.Linear(cfg.trunk.structure_module.c_s, cfg.lddt_head_hid_dim),
            nn.Linear(cfg.lddt_head_hid_dim, cfg.lddt_head_hid_dim),
            nn.Linear(cfg.lddt_head_hid_dim, 37 * self.lddt_bins),
        )

    @staticmethod
    def _af2_to_esm(d: Alphabet):
        # Remember that t is shifted from residue_constants by 1 (0 is padding).
        esm_reorder = [d.padding_idx] + [
            d.get_idx(v) for v in residue_constants.restypes_with_x
        ]
        return torch.tensor(esm_reorder)

    def _af2_idx_to_esm_idx(self, aa, mask):
        aa = (aa + 1).masked_fill(mask != 1, 0)
        return self.af2_to_esm[aa]

    def _compute_language_model_representations(
        self, esmaa: torch.Tensor
    ) -> torch.Tensor:
        """Adds bos/eos tokens for the language model, since the structure module doesn't use these."""
        batch_size = esmaa.size(0)

        bosi, eosi = self.esm_dict.cls_idx, self.esm_dict.eos_idx
        bos = esmaa.new_full((batch_size, 1), bosi)
        eos = esmaa.new_full((batch_size, 1), self.esm_dict.padding_idx)
        esmaa = torch.cat([bos, esmaa, eos], dim=1)
        # Use the first padding index as eos during inference.
        esmaa[range(batch_size), (esmaa != 1).sum(1)] = eosi

        res = self.esm(
            esmaa,
            repr_layers=range(self.esm.num_layers + 1),
            need_head_weights=self.cfg.use_esm_attn_map,
        )
        esm_s = torch.stack(
            [v for _, v in sorted(res["representations"].items())], dim=2
        )
        esm_s = esm_s[:, 1:-1]  # B, L, nLayers, C
        esm_z = (
            res["attentions"].permute(0, 4, 3, 1, 2).flatten(3, 4)[:, 1:-1, 1:-1, :]
            if self.cfg.use_esm_attn_map
            else None
        )
        return esm_s, esm_z

    def _mask_inputs_to_esm(self, esmaa, pattern):
        new_esmaa = esmaa.clone()
        new_esmaa[pattern == 1] = self.esm_dict.mask_idx
        return new_esmaa

    def forward(
        self,
        aa: torch.Tensor,
        mask: T.Optional[torch.Tensor] = None,
        residx: T.Optional[torch.Tensor] = None,
        masking_pattern: T.Optional[torch.Tensor] = None,
        num_recycles: T.Optional[int] = None,
    ):
        """Runs a forward pass given input tokens. Use `model.infer` to
        run inference from a sequence.

        Args:
            aa (torch.Tensor): Tensor containing indices corresponding to amino acids. Indices match
                openfold.np.residue_constants.restype_order_with_x.
            mask (torch.Tensor): Binary tensor with 1 meaning position is unmasked and 0 meaning position is masked.
            residx (torch.Tensor): Residue indices of amino acids. Will assume contiguous if not provided.
            masking_pattern (torch.Tensor): Optional masking to pass to the input. Binary tensor of the same size
                as `aa`. Positions with 1 will be masked. ESMFold sometimes produces different samples when
                different masks are provided.
            num_recycles (int): How many recycle iterations to perform. If None, defaults to training max
                recycles, which is 3.
        """

        if mask is None:
            mask = torch.ones_like(aa)

        B = aa.shape[0]
        L = aa.shape[1]
        device = aa.device

        if residx is None:
            residx = torch.arange(L, device=device).expand_as(aa)

        # === ESM ===
        esmaa = self._af2_idx_to_esm_idx(aa, mask)

        if masking_pattern is not None:
            esmaa = self._mask_inputs_to_esm(esmaa, masking_pattern)

        esm_s, esm_z = self._compute_language_model_representations(esmaa)

        # Convert esm_s to the precision used by the trunk and
        # the structure module. These tensors may be a lower precision if, for example,
        # we're running the language model in fp16 precision.
        esm_s = esm_s.to(self.esm_s_combine.dtype)
        esm_s = esm_s.detach()

        # === preprocessing ===
        esm_s = (self.esm_s_combine.softmax(0).unsqueeze(0) @ esm_s).squeeze(2)

        s_s_0 = self.esm_s_mlp(esm_s)
        if self.cfg.use_esm_attn_map:
            esm_z = esm_z.to(self.esm_s_combine.dtype)
            esm_z = esm_z.detach()
            s_z_0 = self.esm_z_mlp(esm_z)
        else:
            s_z_0 = s_s_0.new_zeros(B, L, L, self.cfg.trunk.pairwise_state_dim)

        s_s_0 += self.embedding(aa)

        structure: dict = self.trunk(
            s_s_0, s_z_0, aa, residx, mask, no_recycles=num_recycles
        )
        # Documenting what we expect:
        structure = {
            k: v
            for k, v in structure.items()
            if k
            in [
                "s_z",
                "s_s",
                "frames",
                "sidechain_frames",
                "unnormalized_angles",
                "angles",
                "positions",
                "states",
            ]
        }

        disto_logits = self.distogram_head(structure["s_z"])
        disto_logits = (disto_logits + disto_logits.transpose(1, 2)) / 2
        structure["distogram_logits"] = disto_logits

        lm_logits = self.lm_head(structure["s_s"])
        structure["lm_logits"] = lm_logits

        structure["aatype"] = aa
        make_atom14_masks(structure)

        for k in [
            "atom14_atom_exists",
            "atom37_atom_exists",
        ]:
            structure[k] *= mask.unsqueeze(-1)
        structure["residue_index"] = residx

        lddt_head = self.lddt_head(structure["states"]).reshape(
            structure["states"].shape[0], B, L, -1, self.lddt_bins
        )
        structure["lddt_head"] = lddt_head
        plddt = categorical_lddt(lddt_head[-1], bins=self.lddt_bins)
        structure["plddt"] = (
            100 * plddt
        )  # we predict plDDT between 0 and 1, scale to be between 0 and 100.

        ptm_logits = self.ptm_head(structure["s_z"])

        seqlen = mask.type(torch.int64).sum(1)
        structure["ptm_logits"] = ptm_logits
        structure["ptm"] = torch.stack(
            [
                compute_tm(
                    batch_ptm_logits[None, :sl, :sl],
                    max_bins=31,
                    no_bins=self.distogram_bins,
                )
                for batch_ptm_logits, sl in zip(ptm_logits, seqlen)
            ]
        )
        structure.update(
            compute_predicted_aligned_error(
                ptm_logits, max_bin=31, no_bins=self.distogram_bins
            )
        )

        return structure

    @torch.no_grad()
    def infer(
        self,
        sequences: T.Union[str, T.List[str]],
        residx=None,
        masking_pattern: T.Optional[torch.Tensor] = None,
        num_recycles: T.Optional[int] = None,
        residue_index_offset: T.Optional[int] = 512,
        chain_linker: T.Optional[str] = "G" * 25,
    ):
        """Runs a forward pass given input sequences.

        Args:
            sequences (Union[str, List[str]]): A list of sequences to make predictions for. Multimers can also be passed in,
                each chain should be separated by a ':' token (e.g. "<chain1>:<chain2>:<chain3>").
            residx (torch.Tensor): Residue indices of amino acids. Will assume contiguous if not provided.
            masking_pattern (torch.Tensor): Optional masking to pass to the input. Binary tensor of the same size
                as `aa`. Positions with 1 will be masked. ESMFold sometimes produces different samples when
                different masks are provided.
            num_recycles (int): How many recycle iterations to perform. If None, defaults to training max
                recycles (cfg.trunk.max_recycles), which is 4.
            residue_index_offset (int): Residue index separation between chains if predicting a multimer. Has no effect on
                single chain predictions. Default: 512.
            chain_linker (str): Linker to use between chains if predicting a multimer. Has no effect on single chain
                predictions. Default: length-25 poly-G ("G" * 25).
        """
        if isinstance(sequences, str):
            sequences = [sequences]

        aatype, mask, _residx, linker_mask, chain_index = batch_encode_sequences(
            sequences, residue_index_offset, chain_linker
        )

        if residx is None:
            residx = _residx
        elif not isinstance(residx, torch.Tensor):
            residx = collate_dense_tensors(residx)

        aatype, mask, residx, linker_mask = map(
            lambda x: x.to(self.device), (aatype, mask, residx, linker_mask)
        )

        output = self.forward(
            aatype,
            mask=mask,
            residx=residx,
            masking_pattern=masking_pattern,
            num_recycles=num_recycles,
        )

        output["atom37_atom_exists"] = output[
            "atom37_atom_exists"
        ] * linker_mask.unsqueeze(2)

        output["mean_plddt"] = (output["plddt"] * output["atom37_atom_exists"]).sum(
            dim=(1, 2)
        ) / output["atom37_atom_exists"].sum(dim=(1, 2))
        output["chain_index"] = chain_index

        return output

    def output_to_pdb(self, output: T.Dict) -> T.List[str]:
        """Returns the pbd (file) string from the model given the model output."""
        return output_to_pdb(output)

    def infer_pdbs(self, seqs: T.List[str], *args, **kwargs) -> T.List[str]:
        """Returns list of pdb (files) strings from the model given a list of input sequences."""
        output = self.infer(seqs, *args, **kwargs)
        return self.output_to_pdb(output)

    def infer_pdb(self, sequence: str, *args, **kwargs) -> str:
        """Returns the pdb (file) string from the model given an input sequence."""
        return self.infer_pdbs([sequence], *args, **kwargs)[0]

    def set_chunk_size(self, chunk_size: T.Optional[int]):
        # This parameter means the axial attention will be computed
        # in a chunked manner. This should make the memory used more or less O(L) instead of O(L^2).
        # It's equivalent to running a for loop over chunks of the dimension we're iterative over,
        # where the chunk_size is the size of the chunks, so 128 would mean to parse 128-lengthed chunks.
        # Setting the value to None will return to default behavior, disable chunking.
        self.trunk.set_chunk_size(chunk_size)

    @property
    def device(self):
        return self.esm_s_combine.device