File size: 18,604 Bytes
3f0529e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
# Contents of this file are from the open source code for
#
# Jing, B., Eismann, S., Suriana, P., Townshend, R. J. L., & Dror, R. (2020).
# Learning from Protein Structure with Geometric Vector Perceptrons. In
# International Conference on Learning Representations.
#
# MIT License
#
# Copyright (c) 2020 Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael Townshend, Ron Dror
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import typing as T
import torch
from torch import nn
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing
def tuple_size(tp):
return tuple([0 if a is None else a.size() for a in tp])
def tuple_sum(tp1, tp2):
s1, v1 = tp1
s2, v2 = tp2
if v2 is None and v2 is None:
return (s1 + s2, None)
return (s1 + s2, v1 + v2)
def tuple_cat(*args, dim=-1):
'''
Concatenates any number of tuples (s, V) elementwise.
:param dim: dimension along which to concatenate when viewed
as the `dim` index for the scalar-channel tensors.
This means that `dim=-1` will be applied as
`dim=-2` for the vector-channel tensors.
'''
dim %= len(args[0][0].shape)
s_args, v_args = list(zip(*args))
return torch.cat(s_args, dim=dim), torch.cat(v_args, dim=dim)
def tuple_index(x, idx):
'''
Indexes into a tuple (s, V) along the first dimension.
:param idx: any object which can be used to index into a `torch.Tensor`
'''
return x[0][idx], x[1][idx]
def randn(n, dims, device="cpu"):
'''
Returns random tuples (s, V) drawn elementwise from a normal distribution.
:param n: number of data points
:param dims: tuple of dimensions (n_scalar, n_vector)
:return: (s, V) with s.shape = (n, n_scalar) and
V.shape = (n, n_vector, 3)
'''
return torch.randn(n, dims[0], device=device), \
torch.randn(n, dims[1], 3, device=device)
def _norm_no_nan(x, axis=-1, keepdims=False, eps=1e-8, sqrt=True):
'''
L2 norm of tensor clamped above a minimum value `eps`.
:param sqrt: if `False`, returns the square of the L2 norm
'''
# clamp is slow
# out = torch.clamp(torch.sum(torch.square(x), axis, keepdims), min=eps)
out = torch.sum(torch.square(x), axis, keepdims) + eps
return torch.sqrt(out) if sqrt else out
def _split(x, nv):
'''
Splits a merged representation of (s, V) back into a tuple.
Should be used only with `_merge(s, V)` and only if the tuple
representation cannot be used.
:param x: the `torch.Tensor` returned from `_merge`
:param nv: the number of vector channels in the input to `_merge`
'''
v = torch.reshape(x[..., -3*nv:], x.shape[:-1] + (nv, 3))
s = x[..., :-3*nv]
return s, v
def _merge(s, v):
'''
Merges a tuple (s, V) into a single `torch.Tensor`, where the
vector channels are flattened and appended to the scalar channels.
Should be used only if the tuple representation cannot be used.
Use `_split(x, nv)` to reverse.
'''
v = torch.reshape(v, v.shape[:-2] + (3*v.shape[-2],))
return torch.cat([s, v], -1)
class GVP(nn.Module):
'''
Geometric Vector Perceptron. See manuscript and README.md
for more details.
:param in_dims: tuple (n_scalar, n_vector)
:param out_dims: tuple (n_scalar, n_vector)
:param h_dim: intermediate number of vector channels, optional
:param activations: tuple of functions (scalar_act, vector_act)
:param tuple_io: whether to keep accepting tuple inputs and outputs when vi
or vo = 0
'''
def __init__(self, in_dims, out_dims, h_dim=None, vector_gate=False,
activations=(F.relu, torch.sigmoid), tuple_io=True,
eps=1e-8):
super(GVP, self).__init__()
self.si, self.vi = in_dims
self.so, self.vo = out_dims
self.tuple_io = tuple_io
if self.vi:
self.h_dim = h_dim or max(self.vi, self.vo)
self.wh = nn.Linear(self.vi, self.h_dim, bias=False)
self.ws = nn.Linear(self.h_dim + self.si, self.so)
if self.vo:
self.wv = nn.Linear(self.h_dim, self.vo, bias=False)
if vector_gate:
self.wg = nn.Linear(self.so, self.vo)
else:
self.ws = nn.Linear(self.si, self.so)
self.vector_gate = vector_gate
self.scalar_act, self.vector_act = activations
self.eps = eps
def forward(self, x):
'''
:param x: tuple (s, V) of `torch.Tensor`,
or (if vectors_in is 0), a single `torch.Tensor`
:return: tuple (s, V) of `torch.Tensor`,
or (if vectors_out is 0), a single `torch.Tensor`
'''
if self.vi:
s, v = x
v = torch.transpose(v, -1, -2)
vh = self.wh(v)
vn = _norm_no_nan(vh, axis=-2, eps=self.eps)
s = self.ws(torch.cat([s, vn], -1))
if self.scalar_act:
s = self.scalar_act(s)
if self.vo:
v = self.wv(vh)
v = torch.transpose(v, -1, -2)
if self.vector_gate:
g = self.wg(s).unsqueeze(-1)
else:
g = _norm_no_nan(v, axis=-1, keepdims=True, eps=self.eps)
if self.vector_act:
g = self.vector_act(g)
v = v * g
else:
if self.tuple_io:
assert x[1] is None
x = x[0]
s = self.ws(x)
if self.scalar_act:
s = self.scalar_act(s)
if self.vo:
v = torch.zeros(list(s.shape)[:-1] + [self.vo, 3],
device=s.device)
if self.vo:
return (s, v)
elif self.tuple_io:
return (s, None)
else:
return s
class _VDropout(nn.Module):
'''
Vector channel dropout where the elements of each
vector channel are dropped together.
'''
def __init__(self, drop_rate):
super(_VDropout, self).__init__()
self.drop_rate = drop_rate
def forward(self, x):
'''
:param x: `torch.Tensor` corresponding to vector channels
'''
if x is None:
return None
device = x.device
if not self.training:
return x
mask = torch.bernoulli(
(1 - self.drop_rate) * torch.ones(x.shape[:-1], device=device)
).unsqueeze(-1)
x = mask * x / (1 - self.drop_rate)
return x
class Dropout(nn.Module):
'''
Combined dropout for tuples (s, V).
Takes tuples (s, V) as input and as output.
'''
def __init__(self, drop_rate):
super(Dropout, self).__init__()
self.sdropout = nn.Dropout(drop_rate)
self.vdropout = _VDropout(drop_rate)
def forward(self, x):
'''
:param x: tuple (s, V) of `torch.Tensor`,
or single `torch.Tensor`
(will be assumed to be scalar channels)
'''
if type(x) is torch.Tensor:
return self.sdropout(x)
s, v = x
return self.sdropout(s), self.vdropout(v)
class LayerNorm(nn.Module):
'''
Combined LayerNorm for tuples (s, V).
Takes tuples (s, V) as input and as output.
'''
def __init__(self, dims, tuple_io=True, eps=1e-8):
super(LayerNorm, self).__init__()
self.tuple_io = tuple_io
self.s, self.v = dims
self.scalar_norm = nn.LayerNorm(self.s)
self.eps = eps
def forward(self, x):
'''
:param x: tuple (s, V) of `torch.Tensor`,
or single `torch.Tensor`
(will be assumed to be scalar channels)
'''
if not self.v:
if self.tuple_io:
return self.scalar_norm(x[0]), None
return self.scalar_norm(x)
s, v = x
vn = _norm_no_nan(v, axis=-1, keepdims=True, sqrt=False, eps=self.eps)
nonzero_mask = (vn > 2 * self.eps)
vn = torch.sum(vn * nonzero_mask, dim=-2, keepdim=True
) / (self.eps + torch.sum(nonzero_mask, dim=-2, keepdim=True))
vn = torch.sqrt(vn + self.eps)
v = nonzero_mask * (v / vn)
return self.scalar_norm(s), v
class GVPConv(MessagePassing):
'''
Graph convolution / message passing with Geometric Vector Perceptrons.
Takes in a graph with node and edge embeddings,
and returns new node embeddings.
This does NOT do residual updates and pointwise feedforward layers
---see `GVPConvLayer`.
:param in_dims: input node embedding dimensions (n_scalar, n_vector)
:param out_dims: output node embedding dimensions (n_scalar, n_vector)
:param edge_dims: input edge embedding dimensions (n_scalar, n_vector)
:param n_layers: number of GVPs in the message function
:param module_list: preconstructed message function, overrides n_layers
:param aggr: should be "add" if some incoming edges are masked, as in
a masked autoregressive decoder architecture
'''
def __init__(self, in_dims, out_dims, edge_dims, n_layers=3,
vector_gate=False, module_list=None, aggr="mean", eps=1e-8,
activations=(F.relu, torch.sigmoid)):
super(GVPConv, self).__init__(aggr=aggr)
self.eps = eps
self.si, self.vi = in_dims
self.so, self.vo = out_dims
self.se, self.ve = edge_dims
module_list = module_list or []
if not module_list:
if n_layers == 1:
module_list.append(
GVP((2*self.si + self.se, 2*self.vi + self.ve),
(self.so, self.vo), activations=(None, None)))
else:
module_list.append(
GVP((2*self.si + self.se, 2*self.vi + self.ve), out_dims,
vector_gate=vector_gate, activations=activations)
)
for i in range(n_layers - 2):
module_list.append(GVP(out_dims, out_dims,
vector_gate=vector_gate))
module_list.append(GVP(out_dims, out_dims,
activations=(None, None)))
self.message_func = nn.Sequential(*module_list)
def forward(self, x, edge_index, edge_attr):
'''
:param x: tuple (s, V) of `torch.Tensor`
:param edge_index: array of shape [2, n_edges]
:param edge_attr: tuple (s, V) of `torch.Tensor`
'''
x_s, x_v = x
message = self.propagate(edge_index,
s=x_s, v=x_v.reshape(x_v.shape[0], 3*x_v.shape[1]),
edge_attr=edge_attr)
return _split(message, self.vo)
def message(self, s_i, v_i, s_j, v_j, edge_attr):
v_j = v_j.view(v_j.shape[0], v_j.shape[1]//3, 3)
v_i = v_i.view(v_i.shape[0], v_i.shape[1]//3, 3)
message = tuple_cat((s_j, v_j), edge_attr, (s_i, v_i))
message = self.message_func(message)
return _merge(*message)
class GVPConvLayer(nn.Module):
'''
Full graph convolution / message passing layer with
Geometric Vector Perceptrons. Residually updates node embeddings with
aggregated incoming messages, applies a pointwise feedforward
network to node embeddings, and returns updated node embeddings.
To only compute the aggregated messages, see `GVPConv`.
:param node_dims: node embedding dimensions (n_scalar, n_vector)
:param edge_dims: input edge embedding dimensions (n_scalar, n_vector)
:param n_message: number of GVPs to use in message function
:param n_feedforward: number of GVPs to use in feedforward function
:param drop_rate: drop probability in all dropout layers
:param autoregressive: if `True`, this `GVPConvLayer` will be used
with a different set of input node embeddings for messages
where src >= dst
'''
def __init__(self, node_dims, edge_dims, vector_gate=False,
n_message=3, n_feedforward=2, drop_rate=.1,
autoregressive=False, attention_heads=0,
conv_activations=(F.relu, torch.sigmoid),
n_edge_gvps=0, layernorm=True, eps=1e-8):
super(GVPConvLayer, self).__init__()
if attention_heads == 0:
self.conv = GVPConv(
node_dims, node_dims, edge_dims, n_layers=n_message,
vector_gate=vector_gate,
aggr="add" if autoregressive else "mean",
activations=conv_activations,
eps=eps,
)
else:
raise NotImplementedError
if layernorm:
self.norm = nn.ModuleList([LayerNorm(node_dims, eps=eps) for _ in range(2)])
else:
self.norm = nn.ModuleList([nn.Identity() for _ in range(2)])
self.dropout = nn.ModuleList([Dropout(drop_rate) for _ in range(2)])
ff_func = []
if n_feedforward == 1:
ff_func.append(GVP(node_dims, node_dims, activations=(None, None)))
else:
hid_dims = 4*node_dims[0], 2*node_dims[1]
ff_func.append(GVP(node_dims, hid_dims, vector_gate=vector_gate))
for i in range(n_feedforward-2):
ff_func.append(GVP(hid_dims, hid_dims, vector_gate=vector_gate))
ff_func.append(GVP(hid_dims, node_dims, activations=(None, None)))
self.ff_func = nn.Sequential(*ff_func)
self.edge_message_func = None
if n_edge_gvps > 0:
si, vi = node_dims
se, ve = edge_dims
module_list = [
GVP((2*si + se, 2*vi + ve), edge_dims, vector_gate=vector_gate)
]
for i in range(n_edge_gvps - 2):
module_list.append(GVP(edge_dims, edge_dims,
vector_gate=vector_gate))
if n_edge_gvps > 1:
module_list.append(GVP(edge_dims, edge_dims,
activations=(None, None)))
self.edge_message_func = nn.Sequential(*module_list)
if layernorm:
self.edge_norm = LayerNorm(edge_dims, eps=eps)
else:
self.edge_norm = nn.Identity()
self.edge_dropout = Dropout(drop_rate)
def forward(self, x, edge_index, edge_attr,
autoregressive_x=None, node_mask=None):
'''
:param x: tuple (s, V) of `torch.Tensor`
:param edge_index: array of shape [2, n_edges]
:param edge_attr: tuple (s, V) of `torch.Tensor`
:param autoregressive_x: tuple (s, V) of `torch.Tensor`.
If not `None`, will be used as srcqq node embeddings
for forming messages where src >= dst. The corrent node
embeddings `x` will still be the base of the update and the
pointwise feedforward.
:param node_mask: array of type `bool` to index into the first
dim of node embeddings (s, V). If not `None`, only
these nodes will be updated.
'''
if self.edge_message_func:
src, dst = edge_index
if autoregressive_x is None:
x_src = x[0][src], x[1][src]
else:
mask = (src < dst).unsqueeze(-1)
x_src = (
torch.where(mask, x[0][src], autoregressive_x[0][src]),
torch.where(mask.unsqueeze(-1), x[1][src],
autoregressive_x[1][src])
)
x_dst = x[0][dst], x[1][dst]
x_edge = (
torch.cat([x_src[0], edge_attr[0], x_dst[0]], dim=-1),
torch.cat([x_src[1], edge_attr[1], x_dst[1]], dim=-2)
)
edge_attr_dh = self.edge_message_func(x_edge)
edge_attr = self.edge_norm(tuple_sum(edge_attr,
self.edge_dropout(edge_attr_dh)))
if autoregressive_x is not None:
# Guarding this import here to remove the dependency on torch_scatter, since this isn't used
# in ESM-IF1
from torch_scatter import scatter_add
src, dst = edge_index
mask = src < dst
edge_index_forward = edge_index[:, mask]
edge_index_backward = edge_index[:, ~mask]
edge_attr_forward = tuple_index(edge_attr, mask)
edge_attr_backward = tuple_index(edge_attr, ~mask)
dh = tuple_sum(
self.conv(x, edge_index_forward, edge_attr_forward),
self.conv(autoregressive_x, edge_index_backward, edge_attr_backward)
)
count = scatter_add(torch.ones_like(dst), dst,
dim_size=dh[0].size(0)).clamp(min=1).unsqueeze(-1)
dh = dh[0] / count, dh[1] / count.unsqueeze(-1)
else:
dh = self.conv(x, edge_index, edge_attr)
if node_mask is not None:
x_ = x
x, dh = tuple_index(x, node_mask), tuple_index(dh, node_mask)
x = self.norm[0](tuple_sum(x, self.dropout[0](dh)))
dh = self.ff_func(x)
x = self.norm[1](tuple_sum(x, self.dropout[1](dh)))
if node_mask is not None:
x_[0][node_mask], x_[1][node_mask] = x[0], x[1]
x = x_
return x, edge_attr
|