File size: 7,586 Bytes
3f0529e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Contents of this file were adapted from the open source fairseq repository.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
from typing import Any, Dict, List, Optional

import torch
import torch.nn as nn
from torch import Tensor

from esm.modules import SinusoidalPositionalEmbedding
from .transformer_layer import TransformerDecoderLayer


def fill_with_neg_inf(t):
    """FP16-compatible function that fills a tensor with -inf."""
    return t.float().fill_(float("-inf")).type_as(t)


class TransformerDecoder(nn.Module):
    """
    Transformer decoder consisting of *args.decoder.layers* layers. Each layer
    is a :class:`TransformerDecoderLayer`.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        dictionary (~fairseq.data.Dictionary): decoding dictionary
        embed_tokens (torch.nn.Embedding): output embedding
        no_encoder_attn (bool, optional): whether to attend to encoder outputs
            (default: False).
    """

    def __init__(
        self,
        args,
        dictionary,
        embed_tokens,
    ):
        super().__init__()
        self.args = args
        self.dictionary = dictionary
        self._future_mask = torch.empty(0)

        self.dropout_module = nn.Dropout(args.dropout)

        input_embed_dim = embed_tokens.embedding_dim
        embed_dim = args.decoder_embed_dim
        self.embed_dim = embed_dim

        self.padding_idx = embed_tokens.padding_idx

        self.embed_tokens = embed_tokens
        self.embed_scale = math.sqrt(embed_dim)

        self.project_in_dim = (
            nn.Linear(input_embed_dim, embed_dim, bias=False)
            if embed_dim != input_embed_dim
            else None
        )
        self.embed_positions = SinusoidalPositionalEmbedding(
            embed_dim,
            self.padding_idx,
        )

        self.layers = nn.ModuleList([])
        self.layers.extend(
            [
                self.build_decoder_layer(args)
                for _ in range(args.decoder_layers)
            ]
        )
        self.num_layers = len(self.layers)
        self.layer_norm = nn.LayerNorm(embed_dim)

        self.build_output_projection(args, dictionary)

    def build_output_projection(self, args, dictionary):
        self.output_projection = nn.Linear(
            args.decoder_embed_dim, len(dictionary), bias=False
        )
        nn.init.normal_(
            self.output_projection.weight, mean=0, std=args.decoder_embed_dim ** -0.5
        )

    def build_decoder_layer(self, args):
        return TransformerDecoderLayer(args)

    def forward(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        features_only: bool = False,
        return_all_hiddens: bool = False,
    ):
        """
        Args:
            prev_output_tokens (LongTensor): previous decoder outputs of shape
                `(batch, tgt_len)`, for teacher forcing
            encoder_out (optional): output from the encoder, used for
                encoder-side attention, should be of size T x B x C
            incremental_state (dict): dictionary used for storing state during
                :ref:`Incremental decoding`
            features_only (bool, optional): only return features without
                applying output layer (default: False).

        Returns:
            tuple:
                - the decoder's output of shape `(batch, tgt_len, vocab)`
                - a dictionary with any model-specific outputs
        """

        x, extra = self.extract_features(
            prev_output_tokens,
            encoder_out=encoder_out,
            incremental_state=incremental_state,
        )

        if not features_only:
            x = self.output_layer(x)
        x = x.transpose(1, 2) # B x T x C -> B x C x T
        return x, extra

    def extract_features(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]],
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
    ):
        """
        Similar to *forward* but only return features.

        Includes several features from "Jointly Learning to Align and
        Translate with Transformer Models" (Garg et al., EMNLP 2019).

        Returns:
            tuple:
                - the decoder's features of shape `(batch, tgt_len, embed_dim)`
                - a dictionary with any model-specific outputs
        """
        bs, slen = prev_output_tokens.size()

        enc: Optional[Tensor] = None
        padding_mask: Optional[Tensor] = None
        if encoder_out is not None and len(encoder_out["encoder_out"]) > 0:
            enc = encoder_out["encoder_out"][0]
            assert (
                enc.size()[1] == bs
            ), f"Expected enc.shape == (t, {bs}, c) got {enc.shape}"
        if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0:
            padding_mask = encoder_out["encoder_padding_mask"][0]

        # embed positions
        positions = self.embed_positions(
            prev_output_tokens
        )

        if incremental_state is not None:
            prev_output_tokens = prev_output_tokens[:, -1:]
            positions = positions[:, -1:]

        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(prev_output_tokens)

        if self.project_in_dim is not None:
            x = self.project_in_dim(x)

        x += positions

        x = self.dropout_module(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        self_attn_padding_mask: Optional[Tensor] = None
        if prev_output_tokens.eq(self.padding_idx).any():
            self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx)

        # decoder layers
        attn: Optional[Tensor] = None
        inner_states: List[Optional[Tensor]] = [x]
        for idx, layer in enumerate(self.layers):
            if incremental_state is None:
                self_attn_mask = self.buffered_future_mask(x)
            else:
                self_attn_mask = None

            x, layer_attn, _ = layer(
                x,
                enc,
                padding_mask,
                incremental_state,
                self_attn_mask=self_attn_mask,
                self_attn_padding_mask=self_attn_padding_mask,
                need_attn=False,
                need_head_weights=False,
            )
            inner_states.append(x)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        # T x B x C -> B x C x T
        x = x.transpose(0, 1)

        return x, {"inner_states": inner_states}

    def output_layer(self, features):
        """Project features to the vocabulary size."""
        return self.output_projection(features)

    def buffered_future_mask(self, tensor):
        dim = tensor.size(0)
        # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround.
        if (
            self._future_mask.size(0) == 0
            or (not self._future_mask.device == tensor.device)
            or self._future_mask.size(0) < dim
        ):
            self._future_mask = torch.triu(
                fill_with_neg_inf(torch.zeros([dim, dim])), 1
            )
        self._future_mask = self._future_mask.to(tensor)
        return self._future_mask[:dim, :dim]