File size: 6,215 Bytes
a43ef32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""

 Copyright (c) 2023, salesforce.com, inc.

 All rights reserved.

 SPDX-License-Identifier: BSD-3-Clause

 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause

"""
import contextlib
import logging
import os
import time
import datetime

import torch
import torch.nn as nn
import torch.distributed as dist
import torch.nn.functional as F

import lavis.common.dist_utils as dist_utils
from lavis.common.dist_utils import download_cached_file
from lavis.common.utils import is_url
from lavis.common.logger import MetricLogger
from lavis.models.base_model import BaseModel
from lavis.models.blip2_models.Qformer import BertConfig, BertLMHeadModel
from lavis.models.eva_vit import create_eva_vit_g
from lavis.models.clip_vit import create_clip_vit_L
from transformers import BertTokenizer


class Blip2ProteinBase(BaseModel):
    @classmethod
    def init_tokenizer(cls, truncation_side="right"):
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side)
        tokenizer.add_special_tokens({"bos_token": "[DEC]"})
        return tokenizer

    def maybe_autocast(self, dtype=torch.float16):
        # if on cpu, don't use autocast
        # if on gpu, use autocast with dtype if provided, otherwise use torch.float16
        enable_autocast = self.device != torch.device("cpu")

        if enable_autocast:
            return torch.cuda.amp.autocast(dtype=dtype)
        else:
            return contextlib.nullcontext()

    @classmethod
    def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2):
        encoder_config = BertConfig.from_pretrained("bert-base-uncased")
        encoder_config.encoder_width = vision_width
        # insert cross-attention layer every other block
        encoder_config.add_cross_attention = True
        encoder_config.cross_attention_freq = cross_attention_freq
        encoder_config.query_length = num_query_token
        Qformer = BertLMHeadModel.from_pretrained(
            "bert-base-uncased", config=encoder_config
        )
        query_tokens = nn.Parameter(
            torch.zeros(1, num_query_token, encoder_config.hidden_size)
        )
        query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
        return Qformer, query_tokens

    def load_from_pretrained(self, url_or_filename):
        if is_url(url_or_filename):
            cached_file = download_cached_file(
                url_or_filename, check_hash=False, progress=True
            )
            checkpoint = torch.load(cached_file, map_location="cpu")
        elif os.path.isfile(url_or_filename):
            checkpoint = torch.load(url_or_filename, map_location="cpu")
        else:
            raise RuntimeError("checkpoint url or path is invalid")

        state_dict = checkpoint["model"]

        msg = self.load_state_dict(state_dict, strict=False)

        # logging.info("Missing keys {}".format(msg.missing_keys))
        logging.info("load checkpoint from %s" % url_or_filename)

        return msg

    def get_optimizer_params(self, weight_decay, lr_scale=1):

        vit_num_layers = self.ln_vision.num_layers
        lr_scales = list(lr_scale ** (vit_num_layers + 1 - i) for i in range(vit_num_layers + 2))

        parameter_group_names = {}
        parameter_group_vars = {}

        for name, param in self.named_parameters():
            if not param.requires_grad:
                continue  # frozen weights
            if len(param.shape) == 1 or name.endswith(".bias"):
                group_name = "no_decay"
                this_weight_decay = 0.
            else:
                group_name = "decay"
                this_weight_decay = weight_decay
            # if 'visual_encoder' in name:
            #     layer_id = self.visual_encoder.get_num_layer(name.replace('visual_encoder.',''))
            #     group_name = "vit_layer_%d_%s" % (layer_id, group_name)
            # else:
            #     layer_id = None

            if group_name not in parameter_group_names:
                # if layer_id is not None:
                #     scale = lr_scales[layer_id]
                # else:
                #     scale = 1
                scale = 1

                parameter_group_names[group_name] = {
                    "weight_decay": this_weight_decay,
                    "params": [],
                    "lr_scale": scale
                }
                parameter_group_vars[group_name] = {
                    "weight_decay": this_weight_decay,
                    "params": [],
                    "lr_scale": scale
                }
            parameter_group_vars[group_name]["params"].append(param)
            parameter_group_names[group_name]["params"].append(name)
        # import json
        # print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
        optim_params = list(parameter_group_vars.values())
        return optim_params

    def _lemmatize(self, answers):
        def apply(answer):
            doc = self.lemmatizer(answer)

            words = []
            for token in doc:
                if token.pos_ in ["NOUN", "VERB"]:
                    words.append(token.lemma_)
                else:
                    words.append(token.text)
            answer = " ".join(words)

            return answer

        return [apply(answer) for answer in answers]

    @property
    def lemmatizer(self):
        if self._lemmatizer is None:
            try:
                import spacy

                self._lemmatizer = spacy.load("en_core_web_sm")
            except ImportError:
                logging.error(
                    """

                    Please install spacy and en_core_web_sm model to apply lemmatization.

                    python -m spacy download en_core_web_sm

                    OR

                    import spacy.cli

                    spacy.cli.download("en_core_web_sm")

                    """
                )
                exit(1)

        return self._lemmatizer