File size: 21,477 Bytes
4a1f168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import re
import pandas as pd
import time
from multiprocessing import Pool
import difflib
from utils import Ontology
import os


def filter(x_list):
    new_go = []
    # x_list = [i.strip() for i in x.split(';')]
    for i in x_list:
        if i in filter_go:
            new_go.append(i)
    return '; '.join(new_go)


def fuzzy_match(texts):
    text_dict = {}
    for context in texts:
        if context in choices:
            text_dict[context] = context
        elif context not in choices:
            # txt_dict[txt] = process.extractOne(txt, choices)[0]
            sim_list = difflib.get_close_matches(context.lower(), choices, n=1, cutoff=0.9)
            if len(sim_list) > 0:
                text_dict[context] = sim_list[0]
            else:
                # text_dict[context] = ''
                pass
    return text_dict


def txt_map(x, txt_dict):
    if type(x) == str:
        x = eval(x)
    x_ = []
    for i in x:
        if i == '':
            continue
        if i in txt_dict:
            x_.append(txt_dict[i])
        else:
            # x_.append(i)
            pass
    return x_


def go_map_prob(x, GO_dict):
    res = []
    for t in x:
        if t[0] in GO_dict:
            res.append((GO_dict[t[0]], t[1]))
        else:
            pass
            # print("{} not in GO_dict".format(t[0]))
    return res


def txt_map_prob(x, txt_dict):
    if type(x) == str:
        x = eval(x)
    x_ = []
    temp = set()
    for i in x:
        if i[0] == '':
            continue
        elif i[0] in txt_dict and txt_dict[i[0]] not in temp:
            x_.append((txt_dict[i[0]].lower(), i[1]))
            temp.add(txt_dict[i[0]])
        # elif i[0] not in txt_dict:
        #    x_.append((i[0].lower(), i[1]))
        #    temp.add(i[0])
        else:
            continue
    return x_


def go_map(x, GO_dict):
    res = []
    for t in x:
        if t in GO_dict:
            res.append(GO_dict[t])
        else:
            # pass
            print("{} not in GO_dict".format(t))
    return res


def prop(df):
    prop_annotations = []
    for i, row in df.iterrows():
        # Propagate annotations
        annot_set = set()
        annots = row['GO_label']
        for go_id in annots:
            annot_set |= godb.get_anchestors(go_id)
        annots = list(annot_set)
        prop_annotations.append(annots)
    df['prop_annotations'] = prop_annotations
    return df


def pred_text_to_go(df, with_prob=False):
    # df['pred'] = df['pred'].apply(lambda x: re.sub('</s>', '', x))
    if with_prob:
        df['pred_list_prob'] = df['pred'].apply(lambda x: [eval(i.strip()) for i in x.split(';')])
        df['pred_list'] = df['pred_list_prob'].apply(lambda x: [i[0] for i in x])
    else:
        df['pred_list'] = df['pred'].apply(lambda x: list(set([i.strip() for i in x.split(';')])))
    ### 预测的文本如果不在GO标签词中,则算作最相似的GO标签
    t0 = time.time()
    txt_dict = {}
    all_txt = []
    for txt in df['pred_list']:
        if type(txt) == str:
            all_txt.extend(eval(txt))
        else:
            all_txt.extend(txt)
    all_txt = list(set(all_txt))
    if '' in all_txt:
        all_txt.remove('')
    n = len(all_txt)
    thread = 10
    size = int(n / thread)
    inds = list(range(0, n, size))
    inds.append(n)
    all_txt_sep = [all_txt[i: min(i + size, n)] for i in inds[:-1]]
    with Pool(processes=thread) as pool:
        result = pool.map(fuzzy_match, all_txt_sep)
    pool.close()
    pool.join()
    for d in result:
        txt_dict.update(d)
    # print(txt_dict)
    # for txt in all_txt[:10]:
    #     fuzzy_match(txt)
    if with_prob:
        df['pred_list_prob'] = df['pred_list_prob'].apply(lambda x: txt_map_prob(x, txt_dict))
        print("fuzzy matching time: {}".format(time.time() - t0))
        df['pred_list_go_prob'] = df['pred_list_prob'].apply(lambda x: go_map_prob(x, GO_dict))
        n0 = df.shape[0]
        df['len'] = df['pred_list_go_prob'].apply(lambda x: len(x))
        df = df[df['len'] > 0]
        df = df.drop('len', axis=1)
        df = df.dropna()
        print('{}条数据,不为空的预测有{}条'.format(n0, df.shape[0]))
    else:
        df['pred_list'] = df['pred_list'].apply(lambda x: txt_map(x, txt_dict))
        df['pred_list'] = df['pred_list'].apply(lambda x: [i.lower() for i in list(set(x))])
        print("fuzzy matching time: {}".format(time.time() - t0))
        df['pred_list_go'] = df['pred_list'].apply(lambda x: go_map(x, GO_dict))

        n0 = df.shape[0]
        df['len'] = df['pred_list_go'].apply(lambda x: len(x))
        df = df[df['len'] > 0]
        df = df.drop('len', axis=1)
        df = df.dropna()
        print('{}条数据,不为空的预测有{}条'.format(n0, df.shape[0]))
    return df


def cal_f1(df):
    df['label_list_go'] = df['label'].apply(lambda x: [i.strip() for i in x.split(';')])
    df['pred_list_go'] = df['pred_list'].apply(lambda x: [i.strip() for i in x.split(';')])

    labels = []
    pred_labels = []
    for l in df['label_list_go']:
        labels.extend(l)

    label_count = {}
    for x in labels:
        if x not in label_count:
            label_count[x] = 1
        else:
            label_count[x] += 1

    labels = list(set(labels))
    total = len(labels)
    tp_dict, fp_dict, fn_dict = dict(zip(labels, [0] * len(labels))), dict(zip(labels, [0] * len(labels))), dict(
        zip(labels, [0] * len(labels)))
    for preds, label in zip(df['pred_list_go'], df['label_list_go']):
        for t in label:
            # supgo = godb.get_anchestors(t)
            # if supgo.intersection(set(preds)):
            if t in preds:
                tp_dict[t] += 1
            else:
                fn_dict[t] += 1
        for p in preds:
            # supgo = godb.get_anchestors(p)
            # if not supgo.intersection(set(label)):
            if p not in label:
                if p in fp_dict:
                    fp_dict[p] += 1
                else:
                    fp_dict[p] = 1
        pred_labels.extend(preds)
    p_total = len(set(pred_labels))
    recall, pr = 0., 0.
    for x in labels:
        recall += tp_dict[x] / (1.0 * (tp_dict[x] + fn_dict[x] + 1e-8))
        pr += tp_dict[x] / (1.0 * (tp_dict[x] + fp_dict[x] + 1e-8))
    r = recall / total
    p = pr / p_total
    f1 = 2 * p * r / (p + r)

    print("preds not in labels: {}".format(len(list(fp_dict.keys())) - total))
    print("recall:{}; percision:{}; f1 score: {}".format(r, p, f1))


def cat_go(x):
    try:
        cat = godb.get_namespace(x)
    except:
        print("{} not found".format(x))
        return
    if cat == NAMESPACES['mf']:
        return 'mf'
    elif cat == NAMESPACES['bp']:
        return 'bp'
    elif cat == NAMESPACES['cc']:
        return 'cc'
    return


def remove_root(x):
    if 'molecular_function' in x:
        x.remove('molecular_function')
    if 'biological_process' in x:
        x.remove('biological_process')
    if 'cellular_component' in x:
        x.remove('cellular_component')
    return x

if __name__ == "__main__":
    NAMESPACES = {
        'cc': 'cellular_component',
        'mf': 'molecular_function',
        'bp': 'biological_process'
    }
    #if not os.path.exists('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/terms.pkl'):
    if 1==1:
        data = pd.read_csv('/cluster/home/wenkai/LAVIS/data/pretrain/swissprot_domain_and_train_exp_prompt_new.csv', sep='|')
        print('数据规模:{}'.format(data.shape[0]))
        # data['function'] = data['function'].apply(lambda x: re.sub('[FPC]:', '', x))
        # data.to_csv('swissprot_domain_and_train_exp.csv', sep='|', index=False)

        godb = Ontology(f'/cluster/home/wenkai/LAVIS/data/go1.4-basic.obo', with_rels=True)
        go_des = pd.read_csv('/cluster/home/wenkai/LAVIS/data/go_descriptions1.4.txt', sep='|', header=None)
        go_des.columns = ['id', 'text']
        go_des = go_des.dropna()
        go_des['id'] = go_des['id'].apply(lambda x: re.sub('_', ':', x))
        go_des['ont'] = go_des['id'].apply(lambda x: cat_go(x))
        go_des = go_des.dropna()
        go_obo_set = set(go_des['id'].tolist())
        go_des['text'] = go_des['text'].apply(lambda x: x.lower())

        data['GO_label'] = data['GO_label'].apply(lambda x: [i.strip() for i in x.split(';')])
        data = prop(data)

        # 加入父节点,得到完整的terms,映射表等等
        go_dict = {}
        for x_list in data['prop_annotations']:
            for goid in x_list:
                if goid in go_dict:
                    go_dict[goid] += 1
                else:
                    go_dict[goid] = 1
        df_stat = pd.DataFrame({'id': list(go_dict.keys()), 'count': list(go_dict.values())})
        data_gos = set(df_stat['id'].tolist())
        go_des = go_des[go_des['id'].isin(data_gos)]
        filter_go = data_gos.intersection(go_obo_set)
        print(f"包括父节点的GO有{len(data_gos)}个,其中在go1.4.obo中出现的GO有{len(filter_go)}个")

        go_des.to_pickle('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/go_des.pkl')
        id2text_dict = dict(zip(go_des['id'], go_des['text']))
        GO_dict = dict(zip(go_des['text'], go_des['id']))

        choices_mf = list(set(go_des[go_des['ont'] == 'mf']['text']))
        choices_bp = list(set(go_des[go_des['ont'] == 'bp']['text']))
        choices_cc = list(set(go_des[go_des['ont'] == 'cc']['text']))

        choices_mf = {x.lower(): x for x in choices_mf}
        choices_bp = {x.lower(): x for x in choices_bp}
        choices_cc = {x.lower(): x for x in choices_cc}

        data['GO_label'] = data['GO_label'].apply(lambda x: filter(x))
        data = data[data['GO_label'] != '']
        data['function'] = data['GO_label'].apply(lambda x: [id2text_dict[i.strip()] for i in x.split(';')])
        data['function'] = data['function'].apply(lambda x: '; '.join(x))

        terms = pd.DataFrame({'gos': list(filter_go)})
        terms.to_pickle('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/terms.pkl')
        terms.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/terms.pkl')

        terms_mf = pd.DataFrame({'gos': list(set(go_des[go_des['ont'] == 'mf']['id']))})
        terms_mf.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/mf/terms.pkl')
        terms_mf.to_pickle('/cluster/home/wenkai/deepgo2/data/mf/terms.pkl')
        terms_bp = pd.DataFrame({'gos': list(set(go_des[go_des['ont'] == 'bp']['id']))})
        terms_bp.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/bp/terms.pkl')
        terms_bp.to_pickle('/cluster/home/wenkai/deepgo2/data/bp/terms.pkl')
        terms_cc = pd.DataFrame({'gos': list(set(go_des[go_des['ont'] == 'cc']['id']))})
        terms_cc.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/cc/terms.pkl')
        terms_cc.to_pickle('/cluster/home/wenkai/deepgo2/data/cc/terms.pkl')
    else:
        godb = Ontology(f'/cluster/home/wenkai/LAVIS/data/go1.4-basic.obo', with_rels=True)
        terms = pd.read_pickle('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/terms.pkl')
        filter_go = set(terms['gos'].tolist())
 
        terms_mf = pd.read_pickle('/cluster/home/wenkai/deepgo2/data/mf/terms.pkl')
        terms_bp = pd.read_pickle('/cluster/home/wenkai/deepgo2/data/bp/terms.pkl')
        terms_cc = pd.read_pickle('/cluster/home/wenkai/deepgo2/data/cc/terms.pkl')

        choices_mf = {x.lower(): x for x in terms_mf['gos'].tolist()}
        choices_bp = {x.lower(): x for x in terms_bp['gos'].tolist()}
        choices_cc = {x.lower(): x for x in terms_cc['gos'].tolist()}

        go_des = pd.read_pickle('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/go_des.pkl')
        id2text_dict = dict(zip(go_des['id'], go_des['text']))
        GO_dict = dict(zip(go_des['text'], go_des['id']))

    # 对于预测文件,进行GO筛选,并用相似度算法匹配到filter_go;对于train test val 文件,进行GO筛选、加入祖先、加入interPro特征
    # 加入interpro特征
    df_interpro = pd.read_csv('/cluster/home/wenkai/LAVIS/data/uniprot_sprot_blip2_func_data.txt', sep='|',
                              nrows=546389,
                              header=None)
    df_interpro.columns = ['name', 'seq', 'go', 'text', 'evi', 'ipr']
    df_interpro = df_interpro[df_interpro['ipr'].notnull()]
    df_interpro['ipr'] = df_interpro['ipr'].apply(lambda x: [i.strip() for i in x.split(';')])

    iprs = []
    for x in df_interpro['ipr'].tolist():
        if len(x) > 0:
            iprs.extend(x)
    iprs = list(set(iprs))
    print("ipr个数:{}".format(len(iprs)))
    df_ipr = pd.DataFrame({'interpros': iprs})
    df_ipr.to_pickle('/cluster/home/wenkai/LAVIS/data/interpros.pkl')
    df_ipr.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/interpros.pkl')


    '''

    # test cases

    df_real = pd.read_csv('/cluster/home/wenkai/LAVIS/data/pretrain/test_2000.csv', sep='|')

    df_real[col] = df_real[col].apply(lambda x: [i.strip() for i in x.split(';')])

    #df_real[col] = df_real[col].apply(lambda x: filter(x))

    df_real = df_real[df_real[col] != '']

    print(df_real.shape)

    #df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [id2text_dict[i] for i in x])

    #df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [GO_dict[i] for i in x])

    df_real = prop(df_real)

    #df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: [id2text_dict[i] for i in x])

    #df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: remove_root(x))

    #df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: list(set([GO_dict[i] for i in x])))

    for ont in ['mf', 'bp', 'cc']:

        file_name = 'output_{}_test_2000'.format(ont)

        if ont == 'mf':

            choices = choices_mf

        elif ont == 'bp':

            choices = choices_bp

        elif ont == 'cc':

            choices = choices_cc

        print("对{}预测文本进行标准化...".format(file_name))

        df_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/{}.txt'.format(file_name), sep='|', header=None, on_bad_lines='skip')

        df_pred.columns = ['name', 'pred', 'label']

        n0 = df_pred.shape[0]

        df_pred = pred_text_to_go(df_pred, with_prob=True)

        print("{}中有{}条数据未能找到相似度高的GO描述".format(file_name, n0-df_pred.shape[0]))

        #df_pred['pred_list'] = df_pred['pred_list'].apply(lambda x: '; '.join(x))

        #cal_f1(df_pred)

        df_pred[['name', 'pred_list_prob', 'label']].to_csv('/cluster/home/wenkai/LAVIS/output/{}_standard.csv'.format(file_name), sep='|', index=False)

    

        df_pred = pd.merge(df_pred[['name', 'pred_list_go_prob']], df_interpro[['name', 'ipr']], on='name', how='left')

        df_pred['ipr'] = df_pred['ipr'].fillna("").apply(list)

        ipr_and_pred = []

        for x, y in zip(df_pred['ipr'], df_pred['pred_list_go_prob']):

            try:

                ipr_and_pred.append(x + y)

            except:

                ipr_and_pred.append(y)

        df_pred['ipr_and_pred'] = ipr_and_pred

        print(df_real.isnull().sum())

        df_pred = pd.merge(df_pred, df_real[['name', 'protein', 'prop_annotations']], on='name', how='left')

        #df_pred = df_pred.dropna()

        print(df_pred.shape)

        df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(

                '/cluster/home/wenkai/deepgozero/data/blip2/pretrain/{}/test_2000_data.pkl'.format(ont))

    '''

    '''

    df_real = pd.read_csv('/cluster/home/wenkai/LAVIS/data/pretrain/nextprot_mf.csv', sep='|')

    df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [i.strip() for i in x.split(';')])

    df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [id2text_dict[i] for i in x])

    df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [GO_dict[i] for i in x])

    df_real = prop(df_real)

    df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: [id2text_dict[i] for i in x])

    df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: remove_root(x))

    df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: list(set([GO_dict[i] for i in x])))

    

    file = 'output_nextprot'

    choices = choices_mf

    df_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/{}.txt'.format(file), sep='|', header=None, on_bad_lines='skip')

    df_pred.columns = ['name', 'pred', 'label']

    df_pred = pred_text_to_go(df_pred, with_prob=True)

    df_pred[['name', 'pred_list_prob', 'label']].to_csv('/cluster/home/wenkai/LAVIS/output/{}_standard.csv'.format(file), sep='|', index=False)

    

    df_pred = pd.merge(df_pred, df_real[['name', 'protein', 'prop_annotations']], on='name', how='left')

    df_pred['ipr'] = [[] for _ in range(df_pred.shape[0])]

    df_pred['ipr_and_pred'] = df_pred['pred_list_go_prob']

    df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(

                '/cluster/home/wenkai/deepgozero/data/blip2/pretrain/mf/nextprot_data.pkl')

    '''
    # '''
    cat_id = {'mf': '445772', 'bp': '496359', 'cc': '505955'}
    col = 'GO_label'
    for ont in ['mf', 'bp', 'cc']:
    #for ont in ['mf']:
        if ont == 'mf':
            choices = choices_mf
        elif ont == 'bp':
            choices = choices_bp
        elif ont == 'cc':
            choices = choices_cc
        for split in ['train', 'val', 'test']:
        #for split in ['test']:
            df_real = pd.read_csv(f'/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/{split}_exp_{ont}_new.csv',
                                  sep='|')
            df_real[col] = df_real[col].apply(lambda x: [i.strip() for i in x.split(';')])
            df_real[col] = df_real[col].apply(lambda x: filter(x))
            df_real = df_real[df_real[col] != '']
            print(df_real.shape)
            df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [i.strip() for i in x.split(';')])
            df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [id2text_dict[i] for i in x])
            df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [GO_dict[i] for i in x])
            df_real = prop(df_real)
            df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: [id2text_dict[i] for i in x])
            df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: remove_root(x))
            df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: list(set([GO_dict[i] for i in x])))

            # 预测text转为go
            df_pred = pd.read_csv(
                f'/cluster/home/wenkai/LAVIS/output/mf_bp_cc/output_{split}_{ont}_exp_{cat_id[ont]}.txt', sep='|',
                header=None, on_bad_lines='skip')
            df_pred.columns = ['name', 'pred', 'label']
            n0 = df_pred.shape[0]
            df_pred = pred_text_to_go(df_pred, with_prob=True)
            print("{}中有{}条数据未能找到相似度高的GO描述".format(ont, n0 - df_pred.shape[0]))
            df_pred[['name', 'pred_list_prob', 'label']].to_csv(
                f'/cluster/home/wenkai/LAVIS/output/mf_bp_cc/output_{split}_{ont}_{cat_id[ont]}_standard.csv', sep='|',
                index=False)

            df_pred = pd.merge(df_pred[['name', 'pred_list_go_prob']], df_interpro[['name', 'ipr']], on='name', how='left')
            df_pred['ipr'] = df_pred['ipr'].fillna("").apply(list)
            ipr_and_pred = []
            for x, y in zip(df_pred['ipr'], df_pred['pred_list_go_prob']):
                try:
                    ipr_and_pred.append(x + y)
                except:
                    ipr_and_pred.append(y)
            df_pred['ipr_and_pred'] = ipr_and_pred

            df_pred = pd.merge(df_pred, df_real[['name', 'protein', 'prop_annotations']], on='name', how='left')
            df_pred = df_pred.dropna()
            df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
                f'/cluster/home/wenkai/deepgozero/data/blip2/pretrain/{ont}/{split}_data_{cat_id[ont]}.pkl')
            df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
                f'/cluster/home/wenkai/deepgo2/data/{ont}/{split}_data_{cat_id[ont]}.pkl')
            if split == 'val':
                df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
                    f'/cluster/home/wenkai/deepgozero/data/blip2/pretrain/{ont}/valid_data_{cat_id[ont]}.pkl')
                df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
                    f'/cluster/home/wenkai/deepgo2/data/{ont}/valid_data_{cat_id[ont]}.pkl')
            print(f"{ont} {split} deepgozero propagation data completed")
    # '''