File size: 21,477 Bytes
4a1f168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import re
import pandas as pd
import time
from multiprocessing import Pool
import difflib
from utils import Ontology
import os
def filter(x_list):
new_go = []
# x_list = [i.strip() for i in x.split(';')]
for i in x_list:
if i in filter_go:
new_go.append(i)
return '; '.join(new_go)
def fuzzy_match(texts):
text_dict = {}
for context in texts:
if context in choices:
text_dict[context] = context
elif context not in choices:
# txt_dict[txt] = process.extractOne(txt, choices)[0]
sim_list = difflib.get_close_matches(context.lower(), choices, n=1, cutoff=0.9)
if len(sim_list) > 0:
text_dict[context] = sim_list[0]
else:
# text_dict[context] = ''
pass
return text_dict
def txt_map(x, txt_dict):
if type(x) == str:
x = eval(x)
x_ = []
for i in x:
if i == '':
continue
if i in txt_dict:
x_.append(txt_dict[i])
else:
# x_.append(i)
pass
return x_
def go_map_prob(x, GO_dict):
res = []
for t in x:
if t[0] in GO_dict:
res.append((GO_dict[t[0]], t[1]))
else:
pass
# print("{} not in GO_dict".format(t[0]))
return res
def txt_map_prob(x, txt_dict):
if type(x) == str:
x = eval(x)
x_ = []
temp = set()
for i in x:
if i[0] == '':
continue
elif i[0] in txt_dict and txt_dict[i[0]] not in temp:
x_.append((txt_dict[i[0]].lower(), i[1]))
temp.add(txt_dict[i[0]])
# elif i[0] not in txt_dict:
# x_.append((i[0].lower(), i[1]))
# temp.add(i[0])
else:
continue
return x_
def go_map(x, GO_dict):
res = []
for t in x:
if t in GO_dict:
res.append(GO_dict[t])
else:
# pass
print("{} not in GO_dict".format(t))
return res
def prop(df):
prop_annotations = []
for i, row in df.iterrows():
# Propagate annotations
annot_set = set()
annots = row['GO_label']
for go_id in annots:
annot_set |= godb.get_anchestors(go_id)
annots = list(annot_set)
prop_annotations.append(annots)
df['prop_annotations'] = prop_annotations
return df
def pred_text_to_go(df, with_prob=False):
# df['pred'] = df['pred'].apply(lambda x: re.sub('</s>', '', x))
if with_prob:
df['pred_list_prob'] = df['pred'].apply(lambda x: [eval(i.strip()) for i in x.split(';')])
df['pred_list'] = df['pred_list_prob'].apply(lambda x: [i[0] for i in x])
else:
df['pred_list'] = df['pred'].apply(lambda x: list(set([i.strip() for i in x.split(';')])))
### 预测的文本如果不在GO标签词中,则算作最相似的GO标签
t0 = time.time()
txt_dict = {}
all_txt = []
for txt in df['pred_list']:
if type(txt) == str:
all_txt.extend(eval(txt))
else:
all_txt.extend(txt)
all_txt = list(set(all_txt))
if '' in all_txt:
all_txt.remove('')
n = len(all_txt)
thread = 10
size = int(n / thread)
inds = list(range(0, n, size))
inds.append(n)
all_txt_sep = [all_txt[i: min(i + size, n)] for i in inds[:-1]]
with Pool(processes=thread) as pool:
result = pool.map(fuzzy_match, all_txt_sep)
pool.close()
pool.join()
for d in result:
txt_dict.update(d)
# print(txt_dict)
# for txt in all_txt[:10]:
# fuzzy_match(txt)
if with_prob:
df['pred_list_prob'] = df['pred_list_prob'].apply(lambda x: txt_map_prob(x, txt_dict))
print("fuzzy matching time: {}".format(time.time() - t0))
df['pred_list_go_prob'] = df['pred_list_prob'].apply(lambda x: go_map_prob(x, GO_dict))
n0 = df.shape[0]
df['len'] = df['pred_list_go_prob'].apply(lambda x: len(x))
df = df[df['len'] > 0]
df = df.drop('len', axis=1)
df = df.dropna()
print('{}条数据,不为空的预测有{}条'.format(n0, df.shape[0]))
else:
df['pred_list'] = df['pred_list'].apply(lambda x: txt_map(x, txt_dict))
df['pred_list'] = df['pred_list'].apply(lambda x: [i.lower() for i in list(set(x))])
print("fuzzy matching time: {}".format(time.time() - t0))
df['pred_list_go'] = df['pred_list'].apply(lambda x: go_map(x, GO_dict))
n0 = df.shape[0]
df['len'] = df['pred_list_go'].apply(lambda x: len(x))
df = df[df['len'] > 0]
df = df.drop('len', axis=1)
df = df.dropna()
print('{}条数据,不为空的预测有{}条'.format(n0, df.shape[0]))
return df
def cal_f1(df):
df['label_list_go'] = df['label'].apply(lambda x: [i.strip() for i in x.split(';')])
df['pred_list_go'] = df['pred_list'].apply(lambda x: [i.strip() for i in x.split(';')])
labels = []
pred_labels = []
for l in df['label_list_go']:
labels.extend(l)
label_count = {}
for x in labels:
if x not in label_count:
label_count[x] = 1
else:
label_count[x] += 1
labels = list(set(labels))
total = len(labels)
tp_dict, fp_dict, fn_dict = dict(zip(labels, [0] * len(labels))), dict(zip(labels, [0] * len(labels))), dict(
zip(labels, [0] * len(labels)))
for preds, label in zip(df['pred_list_go'], df['label_list_go']):
for t in label:
# supgo = godb.get_anchestors(t)
# if supgo.intersection(set(preds)):
if t in preds:
tp_dict[t] += 1
else:
fn_dict[t] += 1
for p in preds:
# supgo = godb.get_anchestors(p)
# if not supgo.intersection(set(label)):
if p not in label:
if p in fp_dict:
fp_dict[p] += 1
else:
fp_dict[p] = 1
pred_labels.extend(preds)
p_total = len(set(pred_labels))
recall, pr = 0., 0.
for x in labels:
recall += tp_dict[x] / (1.0 * (tp_dict[x] + fn_dict[x] + 1e-8))
pr += tp_dict[x] / (1.0 * (tp_dict[x] + fp_dict[x] + 1e-8))
r = recall / total
p = pr / p_total
f1 = 2 * p * r / (p + r)
print("preds not in labels: {}".format(len(list(fp_dict.keys())) - total))
print("recall:{}; percision:{}; f1 score: {}".format(r, p, f1))
def cat_go(x):
try:
cat = godb.get_namespace(x)
except:
print("{} not found".format(x))
return
if cat == NAMESPACES['mf']:
return 'mf'
elif cat == NAMESPACES['bp']:
return 'bp'
elif cat == NAMESPACES['cc']:
return 'cc'
return
def remove_root(x):
if 'molecular_function' in x:
x.remove('molecular_function')
if 'biological_process' in x:
x.remove('biological_process')
if 'cellular_component' in x:
x.remove('cellular_component')
return x
if __name__ == "__main__":
NAMESPACES = {
'cc': 'cellular_component',
'mf': 'molecular_function',
'bp': 'biological_process'
}
#if not os.path.exists('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/terms.pkl'):
if 1==1:
data = pd.read_csv('/cluster/home/wenkai/LAVIS/data/pretrain/swissprot_domain_and_train_exp_prompt_new.csv', sep='|')
print('数据规模:{}'.format(data.shape[0]))
# data['function'] = data['function'].apply(lambda x: re.sub('[FPC]:', '', x))
# data.to_csv('swissprot_domain_and_train_exp.csv', sep='|', index=False)
godb = Ontology(f'/cluster/home/wenkai/LAVIS/data/go1.4-basic.obo', with_rels=True)
go_des = pd.read_csv('/cluster/home/wenkai/LAVIS/data/go_descriptions1.4.txt', sep='|', header=None)
go_des.columns = ['id', 'text']
go_des = go_des.dropna()
go_des['id'] = go_des['id'].apply(lambda x: re.sub('_', ':', x))
go_des['ont'] = go_des['id'].apply(lambda x: cat_go(x))
go_des = go_des.dropna()
go_obo_set = set(go_des['id'].tolist())
go_des['text'] = go_des['text'].apply(lambda x: x.lower())
data['GO_label'] = data['GO_label'].apply(lambda x: [i.strip() for i in x.split(';')])
data = prop(data)
# 加入父节点,得到完整的terms,映射表等等
go_dict = {}
for x_list in data['prop_annotations']:
for goid in x_list:
if goid in go_dict:
go_dict[goid] += 1
else:
go_dict[goid] = 1
df_stat = pd.DataFrame({'id': list(go_dict.keys()), 'count': list(go_dict.values())})
data_gos = set(df_stat['id'].tolist())
go_des = go_des[go_des['id'].isin(data_gos)]
filter_go = data_gos.intersection(go_obo_set)
print(f"包括父节点的GO有{len(data_gos)}个,其中在go1.4.obo中出现的GO有{len(filter_go)}个")
go_des.to_pickle('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/go_des.pkl')
id2text_dict = dict(zip(go_des['id'], go_des['text']))
GO_dict = dict(zip(go_des['text'], go_des['id']))
choices_mf = list(set(go_des[go_des['ont'] == 'mf']['text']))
choices_bp = list(set(go_des[go_des['ont'] == 'bp']['text']))
choices_cc = list(set(go_des[go_des['ont'] == 'cc']['text']))
choices_mf = {x.lower(): x for x in choices_mf}
choices_bp = {x.lower(): x for x in choices_bp}
choices_cc = {x.lower(): x for x in choices_cc}
data['GO_label'] = data['GO_label'].apply(lambda x: filter(x))
data = data[data['GO_label'] != '']
data['function'] = data['GO_label'].apply(lambda x: [id2text_dict[i.strip()] for i in x.split(';')])
data['function'] = data['function'].apply(lambda x: '; '.join(x))
terms = pd.DataFrame({'gos': list(filter_go)})
terms.to_pickle('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/terms.pkl')
terms.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/terms.pkl')
terms_mf = pd.DataFrame({'gos': list(set(go_des[go_des['ont'] == 'mf']['id']))})
terms_mf.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/mf/terms.pkl')
terms_mf.to_pickle('/cluster/home/wenkai/deepgo2/data/mf/terms.pkl')
terms_bp = pd.DataFrame({'gos': list(set(go_des[go_des['ont'] == 'bp']['id']))})
terms_bp.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/bp/terms.pkl')
terms_bp.to_pickle('/cluster/home/wenkai/deepgo2/data/bp/terms.pkl')
terms_cc = pd.DataFrame({'gos': list(set(go_des[go_des['ont'] == 'cc']['id']))})
terms_cc.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/cc/terms.pkl')
terms_cc.to_pickle('/cluster/home/wenkai/deepgo2/data/cc/terms.pkl')
else:
godb = Ontology(f'/cluster/home/wenkai/LAVIS/data/go1.4-basic.obo', with_rels=True)
terms = pd.read_pickle('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/terms.pkl')
filter_go = set(terms['gos'].tolist())
terms_mf = pd.read_pickle('/cluster/home/wenkai/deepgo2/data/mf/terms.pkl')
terms_bp = pd.read_pickle('/cluster/home/wenkai/deepgo2/data/bp/terms.pkl')
terms_cc = pd.read_pickle('/cluster/home/wenkai/deepgo2/data/cc/terms.pkl')
choices_mf = {x.lower(): x for x in terms_mf['gos'].tolist()}
choices_bp = {x.lower(): x for x in terms_bp['gos'].tolist()}
choices_cc = {x.lower(): x for x in terms_cc['gos'].tolist()}
go_des = pd.read_pickle('/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/go_des.pkl')
id2text_dict = dict(zip(go_des['id'], go_des['text']))
GO_dict = dict(zip(go_des['text'], go_des['id']))
# 对于预测文件,进行GO筛选,并用相似度算法匹配到filter_go;对于train test val 文件,进行GO筛选、加入祖先、加入interPro特征
# 加入interpro特征
df_interpro = pd.read_csv('/cluster/home/wenkai/LAVIS/data/uniprot_sprot_blip2_func_data.txt', sep='|',
nrows=546389,
header=None)
df_interpro.columns = ['name', 'seq', 'go', 'text', 'evi', 'ipr']
df_interpro = df_interpro[df_interpro['ipr'].notnull()]
df_interpro['ipr'] = df_interpro['ipr'].apply(lambda x: [i.strip() for i in x.split(';')])
iprs = []
for x in df_interpro['ipr'].tolist():
if len(x) > 0:
iprs.extend(x)
iprs = list(set(iprs))
print("ipr个数:{}".format(len(iprs)))
df_ipr = pd.DataFrame({'interpros': iprs})
df_ipr.to_pickle('/cluster/home/wenkai/LAVIS/data/interpros.pkl')
df_ipr.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/pretrain/interpros.pkl')
'''
# test cases
df_real = pd.read_csv('/cluster/home/wenkai/LAVIS/data/pretrain/test_2000.csv', sep='|')
df_real[col] = df_real[col].apply(lambda x: [i.strip() for i in x.split(';')])
#df_real[col] = df_real[col].apply(lambda x: filter(x))
df_real = df_real[df_real[col] != '']
print(df_real.shape)
#df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [id2text_dict[i] for i in x])
#df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [GO_dict[i] for i in x])
df_real = prop(df_real)
#df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: [id2text_dict[i] for i in x])
#df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: remove_root(x))
#df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: list(set([GO_dict[i] for i in x])))
for ont in ['mf', 'bp', 'cc']:
file_name = 'output_{}_test_2000'.format(ont)
if ont == 'mf':
choices = choices_mf
elif ont == 'bp':
choices = choices_bp
elif ont == 'cc':
choices = choices_cc
print("对{}预测文本进行标准化...".format(file_name))
df_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/{}.txt'.format(file_name), sep='|', header=None, on_bad_lines='skip')
df_pred.columns = ['name', 'pred', 'label']
n0 = df_pred.shape[0]
df_pred = pred_text_to_go(df_pred, with_prob=True)
print("{}中有{}条数据未能找到相似度高的GO描述".format(file_name, n0-df_pred.shape[0]))
#df_pred['pred_list'] = df_pred['pred_list'].apply(lambda x: '; '.join(x))
#cal_f1(df_pred)
df_pred[['name', 'pred_list_prob', 'label']].to_csv('/cluster/home/wenkai/LAVIS/output/{}_standard.csv'.format(file_name), sep='|', index=False)
df_pred = pd.merge(df_pred[['name', 'pred_list_go_prob']], df_interpro[['name', 'ipr']], on='name', how='left')
df_pred['ipr'] = df_pred['ipr'].fillna("").apply(list)
ipr_and_pred = []
for x, y in zip(df_pred['ipr'], df_pred['pred_list_go_prob']):
try:
ipr_and_pred.append(x + y)
except:
ipr_and_pred.append(y)
df_pred['ipr_and_pred'] = ipr_and_pred
print(df_real.isnull().sum())
df_pred = pd.merge(df_pred, df_real[['name', 'protein', 'prop_annotations']], on='name', how='left')
#df_pred = df_pred.dropna()
print(df_pred.shape)
df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
'/cluster/home/wenkai/deepgozero/data/blip2/pretrain/{}/test_2000_data.pkl'.format(ont))
'''
'''
df_real = pd.read_csv('/cluster/home/wenkai/LAVIS/data/pretrain/nextprot_mf.csv', sep='|')
df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [i.strip() for i in x.split(';')])
df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [id2text_dict[i] for i in x])
df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [GO_dict[i] for i in x])
df_real = prop(df_real)
df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: [id2text_dict[i] for i in x])
df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: remove_root(x))
df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: list(set([GO_dict[i] for i in x])))
file = 'output_nextprot'
choices = choices_mf
df_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/{}.txt'.format(file), sep='|', header=None, on_bad_lines='skip')
df_pred.columns = ['name', 'pred', 'label']
df_pred = pred_text_to_go(df_pred, with_prob=True)
df_pred[['name', 'pred_list_prob', 'label']].to_csv('/cluster/home/wenkai/LAVIS/output/{}_standard.csv'.format(file), sep='|', index=False)
df_pred = pd.merge(df_pred, df_real[['name', 'protein', 'prop_annotations']], on='name', how='left')
df_pred['ipr'] = [[] for _ in range(df_pred.shape[0])]
df_pred['ipr_and_pred'] = df_pred['pred_list_go_prob']
df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
'/cluster/home/wenkai/deepgozero/data/blip2/pretrain/mf/nextprot_data.pkl')
'''
# '''
cat_id = {'mf': '445772', 'bp': '496359', 'cc': '505955'}
col = 'GO_label'
for ont in ['mf', 'bp', 'cc']:
#for ont in ['mf']:
if ont == 'mf':
choices = choices_mf
elif ont == 'bp':
choices = choices_bp
elif ont == 'cc':
choices = choices_cc
for split in ['train', 'val', 'test']:
#for split in ['test']:
df_real = pd.read_csv(f'/cluster/home/wenkai/LAVIS/data/pretrain/mf_bp_cc/{split}_exp_{ont}_new.csv',
sep='|')
df_real[col] = df_real[col].apply(lambda x: [i.strip() for i in x.split(';')])
df_real[col] = df_real[col].apply(lambda x: filter(x))
df_real = df_real[df_real[col] != '']
print(df_real.shape)
df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [i.strip() for i in x.split(';')])
df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [id2text_dict[i] for i in x])
df_real['GO_label'] = df_real['GO_label'].apply(lambda x: [GO_dict[i] for i in x])
df_real = prop(df_real)
df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: [id2text_dict[i] for i in x])
df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: remove_root(x))
df_real['prop_annotations'] = df_real['prop_annotations'].apply(lambda x: list(set([GO_dict[i] for i in x])))
# 预测text转为go
df_pred = pd.read_csv(
f'/cluster/home/wenkai/LAVIS/output/mf_bp_cc/output_{split}_{ont}_exp_{cat_id[ont]}.txt', sep='|',
header=None, on_bad_lines='skip')
df_pred.columns = ['name', 'pred', 'label']
n0 = df_pred.shape[0]
df_pred = pred_text_to_go(df_pred, with_prob=True)
print("{}中有{}条数据未能找到相似度高的GO描述".format(ont, n0 - df_pred.shape[0]))
df_pred[['name', 'pred_list_prob', 'label']].to_csv(
f'/cluster/home/wenkai/LAVIS/output/mf_bp_cc/output_{split}_{ont}_{cat_id[ont]}_standard.csv', sep='|',
index=False)
df_pred = pd.merge(df_pred[['name', 'pred_list_go_prob']], df_interpro[['name', 'ipr']], on='name', how='left')
df_pred['ipr'] = df_pred['ipr'].fillna("").apply(list)
ipr_and_pred = []
for x, y in zip(df_pred['ipr'], df_pred['pred_list_go_prob']):
try:
ipr_and_pred.append(x + y)
except:
ipr_and_pred.append(y)
df_pred['ipr_and_pred'] = ipr_and_pred
df_pred = pd.merge(df_pred, df_real[['name', 'protein', 'prop_annotations']], on='name', how='left')
df_pred = df_pred.dropna()
df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
f'/cluster/home/wenkai/deepgozero/data/blip2/pretrain/{ont}/{split}_data_{cat_id[ont]}.pkl')
df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
f'/cluster/home/wenkai/deepgo2/data/{ont}/{split}_data_{cat_id[ont]}.pkl')
if split == 'val':
df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
f'/cluster/home/wenkai/deepgozero/data/blip2/pretrain/{ont}/valid_data_{cat_id[ont]}.pkl')
df_pred[['name', 'protein', 'ipr', 'pred_list_go_prob', 'ipr_and_pred', 'prop_annotations']].to_pickle(
f'/cluster/home/wenkai/deepgo2/data/{ont}/valid_data_{cat_id[ont]}.pkl')
print(f"{ont} {split} deepgozero propagation data completed")
# '''
|