File size: 5,780 Bytes
a43ef32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "\n",
    "import pandas as pd\n",
    "from tqdm import tqdm\n",
    "from lavis.common.utils import get_abs_path, get_cache_path"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "cc3m = pd.read_csv(\"downloaded_cc3m_report.tsv.gz\", compression=\"gzip\", sep=\"\\t\", names=[\"caption\", \"path\", \"dataset\", \"mimetype\", \"size\", \"status\", \"url\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "caption                            a very typical bus station\n",
       "path        /export/home/.cache/lavis/conceptual_caption/i...\n",
       "dataset                                                  cc3m\n",
       "mimetype                                           image/jpeg\n",
       "size                                                    36078\n",
       "status                                                    200\n",
       "url         http://lh6.ggpht.com/-IvRtNLNcG8o/TpFyrudaT6I/...\n",
       "Name: 0, dtype: object"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "cc3m.iloc[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3318333"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(cc3m)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3130587/3130587 [17:28<00:00, 2986.08it/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found 2759017 valid records\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "cnt = 0\n",
    "\n",
    "valid_records = []\n",
    "\n",
    "for i, path in tqdm(enumerate(cc3m.path.unique()), total=len(cc3m.path.unique())):\n",
    "    path = str(path)\n",
    "    if os.path.exists(path):\n",
    "        record = cc3m.iloc[i]\n",
    "        valid_records.append({\"image\": record[\"path\"], \"caption\": record[\"caption\"]})\n",
    "\n",
    "        cnt += 1\n",
    "\n",
    "print(\"Found {} valid records\".format(cnt))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "2759017"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(valid_records)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'image': '/export/home/.cache/lavis/conceptual_caption/images/1_3239086386.jpg',\n",
       " 'caption': 'sierra looked stunning in this top and this skirt while performing with person at their former university'}"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "valid_records[1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/export/home/.cache/lavis/conceptual_caption/annotations/cc3m.json already exists\n"
     ]
    },
    {
     "ename": "",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31mThe Kernel crashed while executing code in the the current cell or a previous cell. Please review the code in the cell(s) to identify a possible cause of the failure. Click <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. View Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
     ]
    }
   ],
   "source": [
    "from omegaconf import OmegaConf\n",
    "\n",
    "\n",
    "config_path = get_abs_path(\"configs/datasets/conceptual_caption/defaults_3m.yaml\")\n",
    "\n",
    "ann_path = OmegaConf.load(\n",
    "    config_path\n",
    ").datasets.conceptual_caption_3m.build_info.annotations.train.storage[0]\n",
    "\n",
    "ann_path = get_cache_path(ann_path)\n",
    "\n",
    "if os.path.exists(ann_path):\n",
    "    # abort\n",
    "    print(\"{} already exists\".format(ann_path))\n",
    "else:\n",
    "    # Save the valid records to a json file\n",
    "    with open(ann_path, \"w\") as f:\n",
    "        f.write(json.dumps(valid_records))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.8.10 ('base')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}