File size: 5,272 Bytes
08b9eb6
 
 
 
 
 
 
 
 
dd9c8e6
9b993cf
0137aa6
08b9eb6
c8e59d5
 
 
08b9eb6
9cc264c
 
 
08b9eb6
 
 
 
dd9c8e6
 
 
 
0b7981d
 
 
 
 
 
 
 
 
3660015
0b7981d
3660015
0b7981d
3660015
0f66ac3
0b7981d
9cc264c
0b7981d
 
 
c8e59d5
9cc264c
 
c8e59d5
0b7981d
 
 
 
 
 
 
9cc264c
0b7981d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61cedea
08b9eb6
61cedea
dd9c8e6
08b9eb6
 
 
 
c8e59d5
08b9eb6
c8e59d5
 
08b9eb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import torch
import torch.nn as nn
import pandas as pd
import torch.nn.functional as F
from lavis.models.protein_models.protein_function_opt import Blip2ProteinMistral
from lavis.models.base_model import FAPMConfig
import spaces
import gradio as gr
from esm_scripts.extract import run_demo
from esm import pretrained, FastaBatchedDataset

# Load the model
model = Blip2ProteinMistral(config=FAPMConfig(), esm_size='3b')
model.load_checkpoint("model/checkpoint_mf2.pth")
model.to('cuda')

# model_esm, alphabet = pretrained.load_model_and_alphabet('esm2_t36_3B_UR50D')
# model_esm.to('cuda')
# model_esm.eval()

@spaces.GPU
def generate_caption(protein, prompt):
    # Process the image and the prompt
    # with open('/home/user/app/example.fasta', 'w') as f:
    #     f.write('>{}\n'.format("protein_name"))
    #     f.write('{}\n'.format(protein.strip()))
    # os.system("python esm_scripts/extract.py esm2_t36_3B_UR50D /home/user/app/example.fasta /home/user/app --repr_layers 36 --truncation_seq_length 1024 --include per_tok")
    # esm_emb = run_demo(protein_name='protein_name', protein_seq=protein, 
    #                    model=model_esm, alphabet=alphabet, 
    #                    include='per_tok', repr_layers=[36], truncation_seq_length=1024)
    protein_name='protein_name'
    protein_seq=protein
    include='per_tok'
    repr_layers=[36]
    truncation_seq_length=1024
    toks_per_batch=4096
    print("start")
    dataset = FastaBatchedDataset([protein_name], [protein_seq])
    print("dataset prepared")
    batches = dataset.get_batch_indices(toks_per_batch, extra_toks_per_seq=1)
    print("batches prepared")
    
    data_loader = torch.utils.data.DataLoader(
        dataset, collate_fn=model.alphabet.get_batch_converter(truncation_seq_length), batch_sampler=batches
    )
    print(f"Read sequences")
    return_contacts = "contacts" in include

    assert all(-(model.model_esm.num_layers + 1) <= i <= model.model_esm.num_layers for i in repr_layers)
    repr_layers = [(i + model.model_esm.num_layers + 1) % (model.model_esm.num_layers + 1) for i in repr_layers]

    with torch.no_grad():
        for batch_idx, (labels, strs, toks) in enumerate(data_loader):
            print(
                f"Processing {batch_idx + 1} of {len(batches)} batches ({toks.size(0)} sequences)"
            )
            if torch.cuda.is_available():
                toks = toks.to(device="cuda", non_blocking=True)
            out = model.model_esm(toks, repr_layers=repr_layers, return_contacts=return_contacts)
            logits = out["logits"].to(device="cpu")
            representations = {
                layer: t.to(device="cpu") for layer, t in out["representations"].items()
            }
            if return_contacts:
                contacts = out["contacts"].to(device="cpu")
            for i, label in enumerate(labels):
                result = {"label": label}
                truncate_len = min(truncation_seq_length, len(strs[i]))
                # Call clone on tensors to ensure tensors are not views into a larger representation
                # See https://github.com/pytorch/pytorch/issues/1995
                if "per_tok" in include:
                    result["representations"] = {
                        layer: t[i, 1 : truncate_len + 1].clone()
                        for layer, t in representations.items()
                    }
                if "mean" in include:
                    result["mean_representations"] = {
                        layer: t[i, 1 : truncate_len + 1].mean(0).clone()
                        for layer, t in representations.items()
                    }
                if "bos" in include:
                    result["bos_representations"] = {
                        layer: t[i, 0].clone() for layer, t in representations.items()
                    }
                if return_contacts:
                    result["contacts"] = contacts[i, : truncate_len, : truncate_len].clone()
            esm_emb = result['representations'][36]
    
    print("esm embedding generated")
    esm_emb = F.pad(esm_emb.t(), (0, 1024 - len(esm_emb))).t().to('cuda')
    print("esm embedding processed")
    samples = {'name': ['protein_name'],
               'image': torch.unsqueeze(esm_emb, dim=0),
               'text_input': ['none'],
               'prompt': [prompt]}
    # Generate the output
    prediction = model.generate(samples, length_penalty=0., num_beams=15, num_captions=10, temperature=1., repetition_penalty=1.0)

    return prediction
    # return "test"

# Define the FAPM interface
description = """Quick demonstration of the FAPM model for protein function prediction. Upload an protein sequence to generate a function description. Modify the Prompt to provide the taxonomy information.

The model used in this app is available at [Hugging Face Model Hub](https://huggingface.co/wenkai/FAPM) and the source code can be found on [GitHub](https://github.com/xiangwenkai/FAPM/tree/main)."""

iface = gr.Interface(
    fn=generate_caption,
    inputs=[gr.Textbox(type="text", label="Upload sequence"), gr.Textbox(type="text", label="Prompt")],
    outputs=gr.Textbox(label="Generated description"),
    description=description
)

# Launch the interface
iface.launch()