File size: 2,030 Bytes
846a3aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""

 # Copyright (c) 2022, salesforce.com, inc.

 # All rights reserved.

 # SPDX-License-Identifier: BSD-3-Clause

 # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause

"""

import streamlit as st
from app import load_demo_image, device
from app.utils import load_model_cache
from lavis.processors import load_processor
from PIL import Image


def app():
    model_type = st.sidebar.selectbox("Model:", ["BLIP"])

    # ===== layout =====
    st.markdown(
        "<h1 style='text-align: center;'>Visual Question Answering</h1>",
        unsafe_allow_html=True,
    )

    instructions = """Try the provided image or upload your own:"""
    file = st.file_uploader(instructions)

    col1, col2 = st.columns(2)

    col1.header("Image")
    if file:
        raw_img = Image.open(file).convert("RGB")
    else:
        raw_img = load_demo_image()

    w, h = raw_img.size
    scaling_factor = 720 / w
    resized_image = raw_img.resize((int(w * scaling_factor), int(h * scaling_factor)))

    col1.image(resized_image, use_column_width=True)
    col2.header("Question")

    user_question = col2.text_input("Input your question!", "What are objects there?")
    qa_button = st.button("Submit")

    col2.header("Answer")

    # ===== event =====
    vis_processor = load_processor("blip_image_eval").build(image_size=480)
    text_processor = load_processor("blip_question").build()

    if qa_button:
        if model_type.startswith("BLIP"):
            model = load_model_cache(
                "blip_vqa", model_type="vqav2", is_eval=True, device=device
            )

            img = vis_processor(raw_img).unsqueeze(0).to(device)
            question = text_processor(user_question)

            vqa_samples = {"image": img, "text_input": [question]}
            answers = model.predict_answers(vqa_samples, inference_method="generate")

            col2.write("\n".join(answers), use_column_width=True)