File size: 13,466 Bytes
a43ef32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
"""

 Copyright (c) 2022, salesforce.com, inc.

 All rights reserved.

 SPDX-License-Identifier: BSD-3-Clause

 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause

"""

import datetime
import logging
import os
import time

import torch
import torch.distributed as dist
import webdataset as wds
from lavis.common.dist_utils import download_cached_file, is_main_process, main_process
from lavis.common.registry import registry
from lavis.common.utils import is_url
from lavis.datasets.data_utils import concat_datasets, reorg_datasets_by_split
from lavis.runners.runner_base import RunnerBase
from torch.utils.data.dataset import ChainDataset


@registry.register_runner("runner_iter")
class RunnerIter(RunnerBase):
    """

    Run training based on the number of iterations. This is common when

    the training dataset size is large. Underhood logic is similar to

    epoch-based training by considering every #iters_per_inner_epoch as an

    inner epoch.



    In iter-based runner, after every #iters_per_inner_epoch steps, we



        1) do a validation epoch;

        2) schedule the learning rate;

        3) save the checkpoint.



    We refer every #iters_per_inner_epoch steps as an inner epoch.

    """

    def __init__(self, cfg, task, model, datasets, job_id):
        super().__init__(cfg, task, model, datasets, job_id)

        self.start_iters = 0

        self.max_iters = int(self.config.run_cfg.get("max_iters", -1))
        assert self.max_iters > 0, "max_iters must be greater than 0."

        self.iters_per_inner_epoch = int(
            self.config.run_cfg.get("iters_per_inner_epoch", -1)
        )
        assert (
            self.iters_per_inner_epoch > 0
        ), "iters_per_inner_epoch must be greater than 0."

    @property
    def max_epoch(self):
        return int(self.max_iters / self.iters_per_inner_epoch)

    @property
    def cur_epoch(self):
        try:
            return self.train_loader.epoch
        except AttributeError:
            # pipeline data (e.g. LAION) is streaming, have no concept of epoch
            return 0

    def _progress(self, cur_iters):
        return "{}_iters={}".format(self.cur_epoch, cur_iters)

    def train(self):
        start_time = time.time()
        best_agg_metric = 0
        best_iters = 0

        self.log_config()

        # resume from checkpoint if specified
        if not self.evaluate_only and self.resume_ckpt_path is not None:
            self._load_checkpoint(self.resume_ckpt_path)

        for start_iters in range(
            self.start_iters, self.max_iters, self.iters_per_inner_epoch
        ):
            end_iters = start_iters + self.iters_per_inner_epoch

            # training phase
            if not self.evaluate_only:
                logging.info(
                    "Start training, max_iters={}, in total {} inner epochs.".format(
                        self.max_iters, int(self.max_iters / self.iters_per_inner_epoch)
                    )
                )
                if start_iters == self.start_iters:
                    self.task.before_training(
                        model=self.unwrap_dist_model(self.model),
                        dataset=self.datasets,
                    )
                train_stats = self.train_iters(self.cur_epoch, start_iters)
                self.log_stats(split_name="train", stats=train_stats)

            # evaluation phase
            if len(self.valid_splits) > 0:
                for split_name in self.valid_splits:
                    logging.info("Evaluating on {}.".format(split_name))

                    val_log = self.eval_epoch(
                        split_name=split_name, cur_epoch=self._progress(end_iters)
                    )
                    if val_log is not None:
                        if is_main_process():
                            assert (
                                "agg_metrics" in val_log
                            ), "No agg_metrics found in validation log."

                            agg_metrics = val_log["agg_metrics"]
                            if agg_metrics > best_agg_metric and split_name == "val":
                                best_iters, best_agg_metric = end_iters, agg_metrics

                                self._save_checkpoint(end_iters, is_best=True)

                            val_log.update({"best_iters": best_iters})
                            self.log_stats(val_log, split_name)

            else:
                # if no validation split is provided, we just save the checkpoint at the end of each inner epoch.
                if not self.evaluate_only:
                    self._save_checkpoint(end_iters, is_best=False)

            if self.evaluate_only:
                break
            dist.barrier()

        # testing phase
        self.evaluate(cur_epoch=self.cur_epoch)

        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        logging.info("Training time {}".format(total_time_str))

    def train_iters(self, epoch, start_iters):
        # train by iterations
        self.model.train()

        return self.task.train_iters(
            epoch=epoch,
            start_iters=start_iters,
            iters_per_inner_epoch=self.iters_per_inner_epoch,
            model=self.model,
            data_loader=self.train_loader,
            optimizer=self.optimizer,
            scaler=self.scaler,
            lr_scheduler=self.lr_scheduler,
            cuda_enabled=self.cuda_enabled,
            log_freq=self.log_freq,
            accum_grad_iters=self.accum_grad_iters,
        )

    @main_process
    def _save_checkpoint(self, cur_iters, is_best=False):
        model_no_ddp = self.unwrap_dist_model(self.model)
        param_grad_dic = {
            k: v.requires_grad for (k, v) in model_no_ddp.named_parameters()
        }

        state_dict = model_no_ddp.state_dict()
        for k in list(state_dict.keys()):
            if k in param_grad_dic.keys() and not param_grad_dic[k]:
                # delete parameters that do not require gradient
                del state_dict[k]

        save_obj = {
            "model": state_dict,
            "optimizer": self.optimizer.state_dict(),
            "config": self.config.to_dict(),
            "scaler": self.scaler.state_dict() if self.scaler else None,
            "iters": cur_iters,
        }
        save_to = os.path.join(
            self.output_dir,
            "checkpoint_{}.pth".format("best" if is_best else cur_iters),
        )
        logging.info("Saving checkpoint at iters {} to {}.".format(cur_iters, save_to))
        torch.save(save_obj, save_to)

    def _load_checkpoint(self, url_or_filename):
        """

        Resume from a checkpoint.

        """
        if is_url(url_or_filename):
            cached_file = download_cached_file(
                url_or_filename, check_hash=False, progress=True
            )
            checkpoint = torch.load(cached_file, map_location=self.device)
        elif os.path.isfile(url_or_filename):
            checkpoint = torch.load(url_or_filename, map_location=self.device)
        else:
            raise RuntimeError("checkpoint url or path is invalid")

        state_dict = checkpoint["model"]
        self.unwrap_dist_model(self.model).load_state_dict(state_dict)

        self.optimizer.load_state_dict(checkpoint["optimizer"])
        if self.scaler and "scaler" in checkpoint:
            self.scaler.load_state_dict(checkpoint["scaler"])

        self.start_iters = checkpoint["iters"] + 1
        logging.info("Resume checkpoint from {}".format(url_or_filename))

    @property
    def dataloaders(self) -> dict:
        """

        A property to get and create dataloaders by split just in need.



        If no train_dataset_ratio is provided, concatenate map-style datasets and

        chain wds.DataPipe datasets separately. Training set becomes a tuple

        (ConcatDataset, ChainDataset), both are optional but at least one of them is

        required. The resultant ConcatDataset and ChainDataset will be sampled evenly.



        If train_dataset_ratio is provided, create a MultiIterLoader to sample

        each dataset by ratios during training.



        Currently do not support multiple datasets for validation and test.



        Returns:

            dict: {split_name: (tuples of) dataloader}

        """
        if self._dataloaders is None:
            # reoganize datasets by split and concatenate/chain if necessary
            dataset_ratios = self.config.run_cfg.get("train_dataset_ratios", None)

            if dataset_ratios is None:
                # concatenate map-style datasets and chain wds.DataPipe datasets separately
                # training set becomes a tuple (ConcatDataset, ChainDataset), both are
                # optional but at least one of them is required. The resultant ConcatDataset
                # and ChainDataset will be sampled evenly.
                logging.info(
                    "dataset_ratios not specified, datasets will be concatenated (map-style datasets) or chained (webdataset.DataPipeline)."
                )

                datasets = reorg_datasets_by_split(self.datasets)
                self.datasets = concat_datasets(datasets)
            else:
                # create multi-loader with the provided ratios, without concatenating or chaining
                missing_keys = [k for k in dataset_ratios if k not in self.datasets]
                if len(missing_keys) > 0:
                    raise ValueError(
                        "Datasets with the following split names are not found: {}".format(
                            missing_keys
                        )
                    )

                unexpected_keys = [k for k in self.datasets if k not in dataset_ratios]
                if len(unexpected_keys) > 0:
                    raise ValueError(
                        "Datasets with the following split names are not expected: {}".format(
                            unexpected_keys
                        )
                    )

                dataset_ratios = [float(dataset_ratios[k]) for k in self.datasets]
                self.datasets = reorg_datasets_by_split(self.datasets)
                # to keep the same structure as return value of concat_datasets
                self.datasets = {
                    k: v[0] if len(v) == 1 else v for k, v in datasets.items()
                }

            # print dataset statistics after concatenation/chaining
            for split_name in self.datasets:
                if isinstance(self.datasets[split_name], tuple) or isinstance(
                    self.datasets[split_name], list
                ):
                    # mixed wds.DataPipeline and torch.utils.data.Dataset
                    num_records = sum(
                        [
                            len(d)
                            if not type(d) in [wds.DataPipeline, ChainDataset]
                            else 0
                            for d in self.datasets[split_name]
                        ]
                    )

                else:
                    try:
                        # a single map-style dataset
                        num_records = len(self.datasets[split_name])
                    except TypeError:
                        # a single wds.DataPipeline or ChainDataset
                        num_records = -1
                        logging.info(
                            "Only a single wds.DataPipeline dataset, no __len__ attribute."
                        )

                if num_records >= 0:
                    logging.info(
                        "Loaded {} records for {} split from the dataset.".format(
                            num_records, split_name
                        )
                    )

            # create dataloaders
            split_names = sorted(self.datasets.keys())

            datasets = [self.datasets[split] for split in split_names]
            is_trains = [split in self.train_splits for split in split_names]

            batch_sizes = [
                self.config.run_cfg.batch_size_train
                if split == "train"
                else self.config.run_cfg.batch_size_eval
                for split in split_names
            ]

            collate_fns = []
            for dataset in datasets:
                if isinstance(dataset, tuple) or isinstance(dataset, list):
                    collate_fns.append([getattr(d, "collater", None) for d in dataset])
                else:
                    collate_fns.append(getattr(dataset, "collater", None))

            dataloaders = self.create_loaders(
                datasets=datasets,
                num_workers=self.config.run_cfg.num_workers,
                batch_sizes=batch_sizes,
                is_trains=is_trains,
                collate_fns=collate_fns,
                dataset_ratios=dataset_ratios,
            )

            self._dataloaders = {k: v for k, v in zip(split_names, dataloaders)}

        return self._dataloaders