File size: 13,902 Bytes
3f0529e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from .multihead_attention import MultiheadAttention # noqa
from .axial_attention import ColumnSelfAttention, RowSelfAttention
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different
(and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def symmetrize(x):
"Make layer symmetric in final two dimensions, used for contact prediction."
return x + x.transpose(-1, -2)
def apc(x):
"Perform average product correct, used for contact prediction."
a1 = x.sum(-1, keepdims=True)
a2 = x.sum(-2, keepdims=True)
a12 = x.sum((-1, -2), keepdims=True)
avg = a1 * a2
avg.div_(a12) # in-place to reduce memory
normalized = x - avg
return normalized
class ESM1LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12, affine=True):
"""Construct a layernorm layer in the TF style (eps inside the sqrt)."""
super().__init__()
self.hidden_size = (hidden_size,) if isinstance(hidden_size, int) else tuple(hidden_size)
self.eps = eps
self.affine = bool(affine)
if self.affine:
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
else:
self.weight, self.bias = None, None
def forward(self, x):
dims = tuple(-(i + 1) for i in range(len(self.hidden_size)))
means = x.mean(dims, keepdim=True)
x_zeromean = x - means
variances = x_zeromean.pow(2).mean(dims, keepdim=True)
x = x_zeromean / torch.sqrt(variances + self.eps)
if self.affine:
x = (self.weight * x) + self.bias
return x
try:
from apex.normalization import FusedLayerNorm as _FusedLayerNorm
class ESM1bLayerNorm(_FusedLayerNorm):
@torch.jit.unused
def forward(self, x):
if not x.is_cuda:
return super().forward(x)
else:
with torch.cuda.device(x.device):
return super().forward(x)
except ImportError:
from torch.nn import LayerNorm as ESM1bLayerNorm
class TransformerLayer(nn.Module):
"""Transformer layer block."""
def __init__(
self,
embed_dim,
ffn_embed_dim,
attention_heads,
add_bias_kv=True,
use_esm1b_layer_norm=False,
use_rotary_embeddings: bool = False,
):
super().__init__()
self.embed_dim = embed_dim
self.ffn_embed_dim = ffn_embed_dim
self.attention_heads = attention_heads
self.use_rotary_embeddings = use_rotary_embeddings
self._init_submodules(add_bias_kv, use_esm1b_layer_norm)
def _init_submodules(self, add_bias_kv, use_esm1b_layer_norm):
BertLayerNorm = ESM1bLayerNorm if use_esm1b_layer_norm else ESM1LayerNorm
self.self_attn = MultiheadAttention(
self.embed_dim,
self.attention_heads,
add_bias_kv=add_bias_kv,
add_zero_attn=False,
use_rotary_embeddings=self.use_rotary_embeddings,
)
self.self_attn_layer_norm = BertLayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, self.ffn_embed_dim)
self.fc2 = nn.Linear(self.ffn_embed_dim, self.embed_dim)
self.final_layer_norm = BertLayerNorm(self.embed_dim)
def forward(
self, x, self_attn_mask=None, self_attn_padding_mask=None, need_head_weights=False
):
residual = x
x = self.self_attn_layer_norm(x)
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
need_weights=True,
need_head_weights=need_head_weights,
attn_mask=self_attn_mask,
)
x = residual + x
residual = x
x = self.final_layer_norm(x)
x = gelu(self.fc1(x))
x = self.fc2(x)
x = residual + x
return x, attn
class AxialTransformerLayer(nn.Module):
"""Implements an Axial MSA Transformer block."""
def __init__(
self,
embedding_dim: int = 768,
ffn_embedding_dim: int = 3072,
num_attention_heads: int = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
max_tokens_per_msa: int = 2**14,
) -> None:
super().__init__()
# Initialize parameters
self.embedding_dim = embedding_dim
self.dropout_prob = dropout
row_self_attention = RowSelfAttention(
embedding_dim,
num_attention_heads,
dropout=dropout,
max_tokens_per_msa=max_tokens_per_msa,
)
column_self_attention = ColumnSelfAttention(
embedding_dim,
num_attention_heads,
dropout=dropout,
max_tokens_per_msa=max_tokens_per_msa,
)
feed_forward_layer = FeedForwardNetwork(
embedding_dim,
ffn_embedding_dim,
activation_dropout=activation_dropout,
max_tokens_per_msa=max_tokens_per_msa,
)
self.row_self_attention = self.build_residual(row_self_attention)
self.column_self_attention = self.build_residual(column_self_attention)
self.feed_forward_layer = self.build_residual(feed_forward_layer)
def build_residual(self, layer: nn.Module):
return NormalizedResidualBlock(
layer,
self.embedding_dim,
self.dropout_prob,
)
def forward(
self,
x: torch.Tensor,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
need_head_weights: bool = False,
):
"""
LayerNorm is applied either before or after the self-attention/ffn
modules similar to the original Transformer implementation.
"""
x, row_attn = self.row_self_attention(
x,
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask,
)
x, column_attn = self.column_self_attention(
x,
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask,
)
x = self.feed_forward_layer(x)
if need_head_weights:
return x, column_attn, row_attn
else:
return x
class LearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int):
if padding_idx is not None:
num_embeddings_ = num_embeddings + padding_idx + 1
else:
num_embeddings_ = num_embeddings
super().__init__(num_embeddings_, embedding_dim, padding_idx)
self.max_positions = num_embeddings
def forward(self, input: torch.Tensor):
"""Input is expected to be of size [bsz x seqlen]."""
if input.size(1) > self.max_positions:
raise ValueError(
f"Sequence length {input.size(1)} above maximum "
f" sequence length of {self.max_positions}"
)
mask = input.ne(self.padding_idx).int()
positions = (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + self.padding_idx
return F.embedding(
positions,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
class SinusoidalPositionalEmbedding(nn.Module):
def __init__(self, embed_dim, padding_idx, learned=False):
super().__init__()
self.embed_dim = embed_dim
self.padding_idx = padding_idx
self.register_buffer("_float_tensor", torch.FloatTensor(1))
self.weights = None
def forward(self, x):
bsz, seq_len = x.shape
max_pos = self.padding_idx + 1 + seq_len
if self.weights is None or max_pos > self.weights.size(0):
self.weights = self.get_embedding(max_pos)
self.weights = self.weights.type_as(self._float_tensor)
positions = self.make_positions(x)
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()
def make_positions(self, x):
mask = x.ne(self.padding_idx)
range_buf = torch.arange(x.size(1), device=x.device).expand_as(x) + self.padding_idx + 1
positions = range_buf.expand_as(x)
return positions * mask.long() + self.padding_idx * (1 - mask.long())
def get_embedding(self, num_embeddings):
half_dim = self.embed_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if self.embed_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if self.padding_idx is not None:
emb[self.padding_idx, :] = 0
return emb
class RobertaLMHead(nn.Module):
"""Head for masked language modeling."""
def __init__(self, embed_dim, output_dim, weight):
super().__init__()
self.dense = nn.Linear(embed_dim, embed_dim)
self.layer_norm = ESM1bLayerNorm(embed_dim)
self.weight = weight
self.bias = nn.Parameter(torch.zeros(output_dim))
def forward(self, features):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = F.linear(x, self.weight) + self.bias
return x
class ContactPredictionHead(nn.Module):
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
def __init__(
self,
in_features: int,
prepend_bos: bool,
append_eos: bool,
bias=True,
eos_idx: Optional[int] = None,
):
super().__init__()
self.in_features = in_features
self.prepend_bos = prepend_bos
self.append_eos = append_eos
if append_eos and eos_idx is None:
raise ValueError("Using an alphabet with eos token, but no eos token was passed in.")
self.eos_idx = eos_idx
self.regression = nn.Linear(in_features, 1, bias)
self.activation = nn.Sigmoid()
def forward(self, tokens, attentions):
# remove eos token attentions
if self.append_eos:
eos_mask = tokens.ne(self.eos_idx).to(attentions)
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
attentions = attentions * eos_mask[:, None, None, :, :]
attentions = attentions[..., :-1, :-1]
# remove cls token attentions
if self.prepend_bos:
attentions = attentions[..., 1:, 1:]
batch_size, layers, heads, seqlen, _ = attentions.size()
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
# features: B x C x T x T
attentions = attentions.to(
self.regression.weight.device
) # attentions always float32, may need to convert to float16
attentions = apc(symmetrize(attentions))
attentions = attentions.permute(0, 2, 3, 1)
return self.activation(self.regression(attentions).squeeze(3))
class NormalizedResidualBlock(nn.Module):
def __init__(
self,
layer: nn.Module,
embedding_dim: int,
dropout: float = 0.1,
):
super().__init__()
self.embedding_dim = embedding_dim
self.layer = layer
self.dropout_module = nn.Dropout(
dropout,
)
self.layer_norm = ESM1bLayerNorm(self.embedding_dim)
def forward(self, x, *args, **kwargs):
residual = x
x = self.layer_norm(x)
outputs = self.layer(x, *args, **kwargs)
if isinstance(outputs, tuple):
x, *out = outputs
else:
x = outputs
out = None
x = self.dropout_module(x)
x = residual + x
if out is not None:
return (x,) + tuple(out)
else:
return x
class FeedForwardNetwork(nn.Module):
def __init__(
self,
embedding_dim: int,
ffn_embedding_dim: int,
activation_dropout: float = 0.1,
max_tokens_per_msa: int = 2**14,
):
super().__init__()
self.embedding_dim = embedding_dim
self.ffn_embedding_dim = ffn_embedding_dim
self.max_tokens_per_msa = max_tokens_per_msa
self.activation_fn = nn.GELU()
self.activation_dropout_module = nn.Dropout(
activation_dropout,
)
self.fc1 = nn.Linear(embedding_dim, ffn_embedding_dim)
self.fc2 = nn.Linear(ffn_embedding_dim, embedding_dim)
def forward(self, x):
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
x = self.fc2(x)
return x
|