File size: 8,206 Bytes
3f0529e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn

from ..modules import (
    AxialTransformerLayer,
    LearnedPositionalEmbedding,
    RobertaLMHead,
    ESM1bLayerNorm,
    ContactPredictionHead,
)

from ..axial_attention import RowSelfAttention, ColumnSelfAttention



class MSATransformer(nn.Module):
    @classmethod
    def add_args(cls, parser):
        # fmt: off
        parser.add_argument(
            "--num_layers",
            default=12,
            type=int,
            metavar="N",
            help="number of layers"
        )
        parser.add_argument(
            "--embed_dim",
            default=768,
            type=int,
            metavar="N",
            help="embedding dimension"
        )
        parser.add_argument(
            "--logit_bias",
            action="store_true",
            help="whether to apply bias to logits"
        )
        parser.add_argument(
            "--ffn_embed_dim",
            default=3072,
            type=int,
            metavar="N",
            help="embedding dimension for FFN",
        )
        parser.add_argument(
            "--attention_heads",
            default=12,
            type=int,
            metavar="N",
            help="number of attention heads",
        )
        parser.add_argument(
            "--dropout",
            default=0.1,
            type=float,
            help="Dropout to apply."
        )
        parser.add_argument(
            "--attention_dropout",
            default=0.1,
            type=float,
            help="Dropout to apply."
        )
        parser.add_argument(
            "--activation_dropout",
            default=0.1,
            type=float,
            help="Dropout to apply."
        )
        parser.add_argument(
            "--max_tokens_per_msa",
            default=2 ** 14,
            type=int,
            help=(
                "Used during inference to batch attention computations in a single "
                "forward pass. This allows increased input sizes with less memory."
            ),
        )
        # fmt: on

    def __init__(self, args, alphabet):
        super().__init__()
        self.args = args
        self.alphabet_size = len(alphabet)
        self.padding_idx = alphabet.padding_idx
        self.mask_idx = alphabet.mask_idx
        self.cls_idx = alphabet.cls_idx
        self.eos_idx = alphabet.eos_idx
        self.prepend_bos = alphabet.prepend_bos
        self.append_eos = alphabet.append_eos

        self.embed_tokens = nn.Embedding(
            self.alphabet_size, self.args.embed_dim, padding_idx=self.padding_idx
        )

        if getattr(self.args, "embed_positions_msa", False):
            emb_dim = getattr(self.args, "embed_positions_msa_dim", self.args.embed_dim)
            self.msa_position_embedding = nn.Parameter(
                0.01 * torch.randn(1, 1024, 1, emb_dim),
                requires_grad=True,
            )
        else:
            self.register_parameter("msa_position_embedding", None)

        self.dropout_module = nn.Dropout(self.args.dropout)
        self.layers = nn.ModuleList(
            [
                AxialTransformerLayer(
                    self.args.embed_dim,
                    self.args.ffn_embed_dim,
                    self.args.attention_heads,
                    self.args.dropout,
                    self.args.attention_dropout,
                    self.args.activation_dropout,
                    getattr(self.args, "max_tokens_per_msa", self.args.max_tokens),
                )
                for _ in range(self.args.layers)
            ]
        )

        self.contact_head = ContactPredictionHead(
            self.args.layers * self.args.attention_heads,
            self.prepend_bos,
            self.append_eos,
            eos_idx=self.eos_idx,
        )
        self.embed_positions = LearnedPositionalEmbedding(
            self.args.max_positions,
            self.args.embed_dim,
            self.padding_idx,
        )
        self.emb_layer_norm_before = ESM1bLayerNorm(self.args.embed_dim)
        self.emb_layer_norm_after = ESM1bLayerNorm(self.args.embed_dim)
        self.lm_head = RobertaLMHead(
            embed_dim=self.args.embed_dim,
            output_dim=self.alphabet_size,
            weight=self.embed_tokens.weight,
        )

    def forward(self, tokens, repr_layers=[], need_head_weights=False, return_contacts=False):
        if return_contacts:
            need_head_weights = True

        assert tokens.ndim == 3
        batch_size, num_alignments, seqlen = tokens.size()
        padding_mask = tokens.eq(self.padding_idx)  # B, R, C
        if not padding_mask.any():
            padding_mask = None

        x = self.embed_tokens(tokens)
        x += self.embed_positions(tokens.view(batch_size * num_alignments, seqlen)).view(x.size())
        if self.msa_position_embedding is not None:
            if x.size(1) > 1024:
                raise RuntimeError(
                    "Using model with MSA position embedding trained on maximum MSA "
                    f"depth of 1024, but received {x.size(1)} alignments."
                )
            x += self.msa_position_embedding[:, :num_alignments]

        x = self.emb_layer_norm_before(x)

        x = self.dropout_module(x)

        if padding_mask is not None:
            x = x * (1 - padding_mask.unsqueeze(-1).type_as(x))

        repr_layers = set(repr_layers)
        hidden_representations = {}
        if 0 in repr_layers:
            hidden_representations[0] = x

        if need_head_weights:
            row_attn_weights = []
            col_attn_weights = []

        # B x R x C x D -> R x C x B x D
        x = x.permute(1, 2, 0, 3)

        for layer_idx, layer in enumerate(self.layers):
            x = layer(
                x,
                self_attn_padding_mask=padding_mask,
                need_head_weights=need_head_weights,
            )
            if need_head_weights:
                x, col_attn, row_attn = x
                # H x C x B x R x R -> B x H x C x R x R
                col_attn_weights.append(col_attn.permute(2, 0, 1, 3, 4))
                # H x B x C x C -> B x H x C x C
                row_attn_weights.append(row_attn.permute(1, 0, 2, 3))
            if (layer_idx + 1) in repr_layers:
                hidden_representations[layer_idx + 1] = x.permute(2, 0, 1, 3)

        x = self.emb_layer_norm_after(x)
        x = x.permute(2, 0, 1, 3)  # R x C x B x D -> B x R x C x D

        # last hidden representation should have layer norm applied
        if (layer_idx + 1) in repr_layers:
            hidden_representations[layer_idx + 1] = x
        x = self.lm_head(x)

        result = {"logits": x, "representations": hidden_representations}
        if need_head_weights:
            # col_attentions: B x L x H x C x R x R
            col_attentions = torch.stack(col_attn_weights, 1)
            # row_attentions: B x L x H x C x C
            row_attentions = torch.stack(row_attn_weights, 1)
            result["col_attentions"] = col_attentions
            result["row_attentions"] = row_attentions
            if return_contacts:
                contacts = self.contact_head(tokens, row_attentions)
                result["contacts"] = contacts

        return result

    def predict_contacts(self, tokens):
        return self(tokens, return_contacts=True)["contacts"]

    @property
    def num_layers(self):
        return self.args.layers

    def max_tokens_per_msa_(self, value: int) -> None:
        """The MSA Transformer automatically batches attention computations when
        gradients are disabled to allow you to pass in larger MSAs at test time than
        you can fit in GPU memory. By default this occurs when more than 2^14 tokens
        are passed in the input MSA. You can set this value to infinity to disable
        this behavior.
        """
        for module in self.modules():
            if isinstance(module, (RowSelfAttention, ColumnSelfAttention)):
                module.max_tokens_per_msa = value