File size: 11,763 Bytes
4a1f168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import pandas as pd
import re
import random
import Levenshtein
import numpy as np
import difflib
# from torchmetrics.text import BLEUScore
import time
from multiprocessing import Pool, Queue, Process
import matplotlib.pyplot as plt
from data.evaluate_data.utils import Ontology
# bleu = BLEUScore(n_gram=1)
def fuzzy_match(texts):
text_dict = {}
for context in texts:
if context not in choices:
# txt_dict[txt] = process.extractOne(txt, choices)[0]
text_dict[context] = difflib.get_close_matches(context, choices, n=1, cutoff=0.)[0]
return text_dict
def get_sim(text, label):
all_s = []
for x in label:
s = 0
for y in text:
temp = Levenshtein.ratio(x, y)
if temp > s:
s = temp
all_s.append(s)
all_s = [round(i, 3) for i in all_s]
# bs = [bleu(x, [label]) for x in text]
return all_s
def txt_map(x, txt_dict):
if type(x) == str:
x = eval(x)
x_ = []
for i in x:
if i == '':
continue
if i in txt_dict:
x_.append(txt_dict[i])
else:
x_.append(i)
return x_
def go_map(t):
if t in GO_dict:
return GO_dict[t]
else:
print(t)
def get_term(df):
from collections import Counter
cnt = Counter()
for i, row in enumerate(df.itertuples()):
for term in row.prop_annotations:
cnt[term] += 1
terms = list(cnt.keys())
# remove top
for top_term in ['GO:0005575', 'GO:0003674', 'GO:0008150']:
if top_term in terms:
terms.remove(top_term)
terms_df = pd.DataFrame({'gos': terms})
terms_df.to_pickle(f'/cluster/home/wenkai/deepgozero/data/blip2/{cat}/terms.pkl')
if __name__ == "__main__":
cat = 'mf'
go = Ontology(f'/cluster/home/wenkai/deepgozero/data/data/go.obo', with_rels=True)
go_des = pd.read_csv('/cluster/home/wenkai/LAVIS/data/go_descriptions_new.txt', sep='|', header=None)
go_des.columns = ['GO', 'function']
go_des = go_des[go_des['function'].notnull()]
go_des['function'] = go_des['function'].apply(lambda x: x.lower().strip())
go_des['GO'] = go_des['GO'].apply(lambda x: re.sub('_', ':', x))
GO_dict = dict(zip(go_des['function'], go_des['GO']))
data = pd.read_csv('/cluster/home/wenkai/LAVIS/output/predict_concat_test{}.csv'.format(cat), sep='|')
data['label'] = data['label'].apply(lambda x: x.lower())
data['pred'] = data['pred'].apply(lambda x: re.sub('</s>', '', x))
data['label_list'] = data['label'].apply(lambda x: [i.strip() for i in x.split(';')])
data['pred_list'] = data['pred'].apply(lambda x: [i.strip() for i in x.split(';')])
train = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_split/train_{}.csv'.format(cat), sep='|')
train = train.drop_duplicates()
train['function'] = train['function'].apply(lambda x: x.lower().strip())
train_dict = dict(zip(train['function'], train['GO_label']))
test = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_split/test_{}.csv'.format(cat), sep='|')
test = test.drop_duplicates()
test['function'] = test['function'].apply(lambda x: x.lower().strip())
test_dict = dict(zip(test['function'], test['GO_label']))
GO_dict.update(train_dict)
GO_dict.update(test_dict)
choices = []
for x in data['label_list'].tolist() + train['function'].tolist():
choices.extend(x)
choices = list(set(choices))
### 预测的文本如果不在GO标签词中,则算作最相似的GO标签
print("找到与预测文本最相似的GO标签......")
t0 = time.time()
txt_dict = {}
all_txt = []
for txt in data['pred_list']:
if type(txt) == str:
all_txt.extend(eval(txt))
else:
all_txt.extend(txt)
all_txt = list(set(all_txt))
n = len(all_txt)
thread = 40
size = int(n/thread)
inds = list(range(0, n, size))
inds.append(n)
all_txt_sep = [all_txt[i: min(i+size, n)] for i in inds[:-1]]
with Pool(processes=thread) as pool:
result = pool.map(fuzzy_match, all_txt_sep)
pool.close()
pool.join()
for d in result:
txt_dict.update(d)
# for txt in all_txt[:10]:
# fuzzy_match(txt)
data['pred_list'] = data['pred_list'].apply(lambda x: txt_map(x, txt_dict))
data['pred_list'] = data['pred_list'].apply(lambda x: list(set(x)))
print("fuzzy matching time: {}".format(time.time() - t0))
# sims = []
# for text, label in zip(data['pred_list'].tolist(), data['label_list'].tolist()):
# a = get_sim(text, label)
# sims.append(a)
#
# data['sim'] = sims
# data['avg_sim'] = data['sim'].apply(lambda x: round(np.mean(x), 3))
# print("simlarity: {}".format(data['avg_sim'].mean()))
print("calculating f1 score ......")
data['label_list_go'] = data['label_list'].apply(lambda x: [go_map(i) for i in x])
data['pred_list_go'] = data['pred_list'].apply(lambda x: [go_map(i) for i in x])
labels = []
pred_labels = []
for l in data['label_list_go']:
if type(l) == str:
l = eval(l)
labels.extend(l)
label_count = {}
for x in labels:
if x not in label_count:
label_count[x] = 1
else:
label_count[x] += 1
labels = list(set(labels))
total = len(labels)
recalls = []
precisions = []
tp_dict, fp_dict, fn_dict = dict(zip(labels, [0]*len(labels))), dict(zip(labels, [0]*len(labels))), dict(zip(labels, [0]*len(labels)))
for preds, label in zip(data['pred_list_go'], data['label_list_go']):
if type(label) == str:
label = eval(label)
if type(preds) == str:
txts = eval(preds)
ll = len(label)
for t in label:
supgo = go.get_anchestors(t)
if supgo.intersection(set(preds)):
tp_dict[t] += 1
else:
fn_dict[t] += 1
for p in preds:
supgo = go.get_anchestors(p)
if not supgo.intersection(set(label)):
if p in fp_dict:
fp_dict[p] += 1
else:
fp_dict[p] = 1
pred_labels.extend(preds)
p_total = len(set(pred_labels))
recall, pr = 0., 0.
for x in labels:
recall += tp_dict[x] / (1.0 * (tp_dict[x] + fn_dict[x] + 1e-8))
pr += tp_dict[x] / (1.0 * (tp_dict[x] + fp_dict[x] + 1e-8))
r = recall / total
p = pr / p_total
f1 = 2 * p * r / (p + r)
print("preds not in labels: {}".format(len(list(fp_dict.keys())) - total))
print("f1 score: {}".format(f1))
'''
cat_f1 = {}
for x in labels:
if tp_dict[x] + fn_dict[x] > 0:
re = tp_dict[x] / (1.0 * (tp_dict[x] + fn_dict[x] + 1e-8))
pr = tp_dict[x] / (1.0 * (tp_dict[x] + fp_dict[x] + 1e-8))
cat_f1[x] = 2 * pr * re / (pr + re + 1e-10)
plt.xlabel('f score')
plt.ylabel('count')
print(np.mean(list(cat_f1.values())))
plt.hist(list(cat_f1.values()), color='red', bins=30)
plt.show()
xs, ys = [], []
for x in labels:
xs.append(label_count[x])
ys.append(cat_f1[x])
df_count = pd.DataFrame({'xs': xs, 'ys': ys})
df_count['xs'].loc[df_count['xs'] > 10] = 11
df_count['xs'] = df_count['xs'].astype(str)
df_count1 = df_count.groupby('xs').mean().reset_index()
df_count2 = df_count.groupby('xs').count().reset_index()
plt.xlabel('label count')
plt.ylabel('f score mean')
df_count1['xs'] = df_count1['xs'].astype(int)
plt.scatter(df_count1['xs'], df_count1['ys'], color='red')
plt.show()
plt.xlabel('label count')
plt.ylabel('protein num')
df_count2['xs'] = df_count2['xs'].astype(int)
plt.bar(df_count2['xs'], df_count2['ys'], color='red')
plt.show()
'''
# 准备数据:blip2预测的Go标签作为feature,label加入祖先后作为预测的Y
print("准备加入祖先后的数据......")
train = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_split/train_{}.csv'.format(cat), sep='|')
test = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_split/test_{}.csv'.format(cat), sep='|')
train = train.groupby('name').agg({'GO_label': list}).reset_index()
test = test.groupby('name').agg({'GO_label': list}).reset_index()
def prop(df):
prop_annotations = []
for i, row in df.iterrows():
# Propagate annotations
annot_set = set()
annots = row['GO_label']
for go_id in annots:
annot_set |= go.get_anchestors(go_id)
annots = list(annot_set)
prop_annotations.append(annots)
df['prop_annotations'] = prop_annotations
return df
train = prop(train)
test = prop(test)
train_test = pd.concat([train, test])
get_term(train_test)
del train_test
def pred_text_to_go(df):
df['pred'] = df['pred'].apply(lambda x: re.sub('</s>', '', x))
df['pred_list'] = df['pred'].apply(lambda x: [i.strip() for i in x.split(';')])
### 预测的文本如果不在GO标签词中,则算作最相似的GO标签
t0 = time.time()
txt_dict = {}
all_txt = []
for txt in df['pred_list']:
if type(txt) == str:
all_txt.extend(eval(txt))
else:
all_txt.extend(txt)
all_txt = list(set(all_txt))
if '' in all_txt:
all_txt.remove('')
n = len(all_txt)
thread = 40
size = int(n / thread)
inds = list(range(0, n, size))
inds.append(n)
all_txt_sep = [all_txt[i: min(i + size, n)] for i in inds[:-1]]
with Pool(processes=thread) as pool:
result = pool.map(fuzzy_match, all_txt_sep)
pool.close()
pool.join()
for d in result:
txt_dict.update(d)
# for txt in all_txt[:10]:
# fuzzy_match(txt)
df['pred_list'] = df['pred_list'].apply(lambda x: txt_map(x, txt_dict))
df['pred_list'] = df['pred_list'].apply(lambda x: list(set(x)))
print("fuzzy matching time: {}".format(time.time() - t0))
df['pred_list_go'] = df['pred_list'].apply(lambda x: [go_map(i) for i in x])
return df
train_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/predict_concat_train{}.csv'.format(cat), sep='|')
test_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/predict_concat_test{}.csv'.format(cat), sep='|')
train_pred = pred_text_to_go(train_pred)
test_pred = pred_text_to_go(test_pred)
train_data = pd.merge(train[['name', 'prop_annotations']],
train_pred[['name', 'pred_list_go']],
on='name', how='inner')
train_data = train_data.drop_duplicates('name')
train_data.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/{}/train_data.pkl'.format(cat))
test_data = pd.merge(test[['name', 'prop_annotations']],
test_pred[['name', 'pred_list_go']],
on='name', how='inner')
test_data = test_data.drop_duplicates('name')
test_data.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/{}/test_data.pkl'.format(cat))
test_data.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/{}/valid_data.pkl'.format(cat))
|