File size: 11,763 Bytes
4a1f168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import pandas as pd
import re
import random
import Levenshtein
import numpy as np
import difflib
# from torchmetrics.text import BLEUScore
import time
from multiprocessing import Pool, Queue, Process
import matplotlib.pyplot as plt
from data.evaluate_data.utils import Ontology
# bleu = BLEUScore(n_gram=1)

def fuzzy_match(texts):
    text_dict = {}
    for context in texts:
        if context not in choices:
            # txt_dict[txt] = process.extractOne(txt, choices)[0]
            text_dict[context] = difflib.get_close_matches(context, choices, n=1, cutoff=0.)[0]
    return text_dict


def get_sim(text, label):
    all_s = []
    for x in label:
        s = 0
        for y in text:
            temp = Levenshtein.ratio(x, y)
            if temp > s:
                s = temp
        all_s.append(s)
    all_s = [round(i, 3) for i in all_s]

    # bs = [bleu(x, [label]) for x in text]
    return all_s


def txt_map(x, txt_dict):
    if type(x) == str:
        x = eval(x)
    x_ = []
    for i in x:
        if i == '':
            continue
        if i in txt_dict:
            x_.append(txt_dict[i])
        else:
            x_.append(i)
    return x_


def go_map(t):
    if t in GO_dict:
        return GO_dict[t]
    else:
        print(t)


def get_term(df):
    from collections import Counter
    cnt = Counter()
    for i, row in enumerate(df.itertuples()):
        for term in row.prop_annotations:
            cnt[term] += 1
    terms = list(cnt.keys())
    # remove top
    for top_term in ['GO:0005575', 'GO:0003674', 'GO:0008150']:
        if top_term in terms:
            terms.remove(top_term)
    terms_df = pd.DataFrame({'gos': terms})
    terms_df.to_pickle(f'/cluster/home/wenkai/deepgozero/data/blip2/{cat}/terms.pkl')


if __name__ == "__main__":
    cat = 'mf'

    go = Ontology(f'/cluster/home/wenkai/deepgozero/data/data/go.obo', with_rels=True)
    go_des = pd.read_csv('/cluster/home/wenkai/LAVIS/data/go_descriptions_new.txt', sep='|', header=None)
    go_des.columns = ['GO', 'function']
    go_des = go_des[go_des['function'].notnull()]
    go_des['function'] = go_des['function'].apply(lambda x: x.lower().strip())
    go_des['GO'] = go_des['GO'].apply(lambda x: re.sub('_', ':', x))
    GO_dict = dict(zip(go_des['function'], go_des['GO']))


    data = pd.read_csv('/cluster/home/wenkai/LAVIS/output/predict_concat_test{}.csv'.format(cat), sep='|')

    data['label'] = data['label'].apply(lambda x: x.lower())
    data['pred'] = data['pred'].apply(lambda x: re.sub('</s>', '', x))

    data['label_list'] = data['label'].apply(lambda x: [i.strip() for i in x.split(';')])
    data['pred_list'] = data['pred'].apply(lambda x: [i.strip() for i in x.split(';')])

    train = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_split/train_{}.csv'.format(cat), sep='|')
    train = train.drop_duplicates()
    train['function'] = train['function'].apply(lambda x: x.lower().strip())
    train_dict = dict(zip(train['function'], train['GO_label']))
    test = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_split/test_{}.csv'.format(cat), sep='|')
    test = test.drop_duplicates()
    test['function'] = test['function'].apply(lambda x: x.lower().strip())
    test_dict = dict(zip(test['function'], test['GO_label']))
    GO_dict.update(train_dict)
    GO_dict.update(test_dict)

    choices = []
    for x in data['label_list'].tolist() + train['function'].tolist():
        choices.extend(x)
    choices = list(set(choices))


    ### 预测的文本如果不在GO标签词中,则算作最相似的GO标签
    print("找到与预测文本最相似的GO标签......")
    t0 = time.time()
    txt_dict = {}

    all_txt = []
    for txt in data['pred_list']:
        if type(txt) == str:
            all_txt.extend(eval(txt))
        else:
            all_txt.extend(txt)
    all_txt = list(set(all_txt))

    n = len(all_txt)
    thread = 40
    size = int(n/thread)
    inds = list(range(0, n, size))
    inds.append(n)
    all_txt_sep = [all_txt[i: min(i+size, n)] for i in inds[:-1]]

    with Pool(processes=thread) as pool:
        result = pool.map(fuzzy_match, all_txt_sep)
    pool.close()
    pool.join()
    for d in result:
        txt_dict.update(d)

    # for txt in all_txt[:10]:
    #     fuzzy_match(txt)

    data['pred_list'] = data['pred_list'].apply(lambda x: txt_map(x, txt_dict))
    data['pred_list'] = data['pred_list'].apply(lambda x: list(set(x)))
    print("fuzzy matching time: {}".format(time.time() - t0))


    # sims = []
    # for text, label in zip(data['pred_list'].tolist(), data['label_list'].tolist()):
    #     a = get_sim(text, label)
    #     sims.append(a)
    #
    # data['sim'] = sims
    # data['avg_sim'] = data['sim'].apply(lambda x: round(np.mean(x), 3))
    # print("simlarity: {}".format(data['avg_sim'].mean()))


    print("calculating f1 score ......")
    data['label_list_go'] = data['label_list'].apply(lambda x: [go_map(i) for i in x])
    data['pred_list_go'] = data['pred_list'].apply(lambda x: [go_map(i) for i in x])


    labels = []
    pred_labels = []
    for l in data['label_list_go']:
        if type(l) == str:
            l = eval(l)
        labels.extend(l)

    label_count = {}
    for x in labels:
        if x not in label_count:
            label_count[x] = 1
        else:
            label_count[x] += 1

    labels = list(set(labels))
    total = len(labels)
    recalls = []
    precisions = []
    tp_dict, fp_dict, fn_dict = dict(zip(labels, [0]*len(labels))), dict(zip(labels, [0]*len(labels))), dict(zip(labels, [0]*len(labels)))
    for preds, label in zip(data['pred_list_go'], data['label_list_go']):
        if type(label) == str:
            label = eval(label)
        if type(preds) == str:
            txts = eval(preds)
        ll = len(label)
        for t in label:
            supgo = go.get_anchestors(t)
            if supgo.intersection(set(preds)):
                tp_dict[t] += 1
            else:
                fn_dict[t] += 1
        for p in preds:
            supgo = go.get_anchestors(p)
            if not supgo.intersection(set(label)):
                if p in fp_dict:
                    fp_dict[p] += 1
                else:
                    fp_dict[p] = 1
        pred_labels.extend(preds)
    p_total = len(set(pred_labels))
    recall, pr = 0., 0.
    for x in labels:
        recall += tp_dict[x] / (1.0 * (tp_dict[x] + fn_dict[x] + 1e-8))
        pr += tp_dict[x] / (1.0 * (tp_dict[x] + fp_dict[x] + 1e-8))
    r = recall / total
    p = pr / p_total
    f1 = 2 * p * r / (p + r)

    print("preds not in labels: {}".format(len(list(fp_dict.keys())) - total))
    print("f1 score: {}".format(f1))

    '''

    cat_f1 = {}

    for x in labels:

        if tp_dict[x] + fn_dict[x] > 0:

            re = tp_dict[x] / (1.0 * (tp_dict[x] + fn_dict[x] + 1e-8))

            pr = tp_dict[x] / (1.0 * (tp_dict[x] + fp_dict[x] + 1e-8))

            cat_f1[x] = 2 * pr * re / (pr + re + 1e-10)

    

    plt.xlabel('f score')

    plt.ylabel('count')

    print(np.mean(list(cat_f1.values())))

    plt.hist(list(cat_f1.values()), color='red', bins=30)

    plt.show()

    

    xs, ys = [], []

    for x in labels:

        xs.append(label_count[x])

        ys.append(cat_f1[x])

    df_count = pd.DataFrame({'xs': xs, 'ys': ys})

    df_count['xs'].loc[df_count['xs'] > 10] = 11

    df_count['xs'] = df_count['xs'].astype(str)

    df_count1 = df_count.groupby('xs').mean().reset_index()

    df_count2 = df_count.groupby('xs').count().reset_index()

    

    plt.xlabel('label count')

    plt.ylabel('f score mean')

    df_count1['xs'] = df_count1['xs'].astype(int)

    plt.scatter(df_count1['xs'], df_count1['ys'], color='red')

    plt.show()

    

    plt.xlabel('label count')

    plt.ylabel('protein num')

    df_count2['xs'] = df_count2['xs'].astype(int)

    plt.bar(df_count2['xs'], df_count2['ys'], color='red')

    plt.show()

    '''


    # 准备数据:blip2预测的Go标签作为feature,label加入祖先后作为预测的Y
    print("准备加入祖先后的数据......")
    train = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_split/train_{}.csv'.format(cat), sep='|')
    test = pd.read_csv('/cluster/home/wenkai/LAVIS/data/sim_split/test_{}.csv'.format(cat), sep='|')
    train = train.groupby('name').agg({'GO_label': list}).reset_index()
    test = test.groupby('name').agg({'GO_label': list}).reset_index()

    def prop(df):
        prop_annotations = []
        for i, row in df.iterrows():
            # Propagate annotations
            annot_set = set()
            annots = row['GO_label']
            for go_id in annots:
                annot_set |= go.get_anchestors(go_id)
            annots = list(annot_set)
            prop_annotations.append(annots)
        df['prop_annotations'] = prop_annotations
        return df

    train = prop(train)
    test = prop(test)

    train_test = pd.concat([train, test])
    get_term(train_test)
    del train_test

    def pred_text_to_go(df):
        df['pred'] = df['pred'].apply(lambda x: re.sub('</s>', '', x))

        df['pred_list'] = df['pred'].apply(lambda x: [i.strip() for i in x.split(';')])
        ### 预测的文本如果不在GO标签词中,则算作最相似的GO标签
        t0 = time.time()
        txt_dict = {}

        all_txt = []
        for txt in df['pred_list']:
            if type(txt) == str:
                all_txt.extend(eval(txt))
            else:
                all_txt.extend(txt)

        all_txt = list(set(all_txt))
        if '' in all_txt:
            all_txt.remove('')

        n = len(all_txt)
        thread = 40
        size = int(n / thread)
        inds = list(range(0, n, size))
        inds.append(n)
        all_txt_sep = [all_txt[i: min(i + size, n)] for i in inds[:-1]]

        with Pool(processes=thread) as pool:
            result = pool.map(fuzzy_match, all_txt_sep)
        pool.close()
        pool.join()
        for d in result:
            txt_dict.update(d)

        # for txt in all_txt[:10]:
        #     fuzzy_match(txt)

        df['pred_list'] = df['pred_list'].apply(lambda x: txt_map(x, txt_dict))
        df['pred_list'] = df['pred_list'].apply(lambda x: list(set(x)))
        print("fuzzy matching time: {}".format(time.time() - t0))

        df['pred_list_go'] = df['pred_list'].apply(lambda x: [go_map(i) for i in x])
        return df


    train_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/predict_concat_train{}.csv'.format(cat), sep='|')
    test_pred = pd.read_csv('/cluster/home/wenkai/LAVIS/output/predict_concat_test{}.csv'.format(cat), sep='|')

    train_pred = pred_text_to_go(train_pred)
    test_pred = pred_text_to_go(test_pred)

    train_data = pd.merge(train[['name', 'prop_annotations']],
                          train_pred[['name', 'pred_list_go']],
                          on='name', how='inner')
    train_data = train_data.drop_duplicates('name')
    train_data.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/{}/train_data.pkl'.format(cat))

    test_data = pd.merge(test[['name', 'prop_annotations']],
                         test_pred[['name', 'pred_list_go']],
                         on='name', how='inner')
    test_data = test_data.drop_duplicates('name')
    test_data.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/{}/test_data.pkl'.format(cat))
    test_data.to_pickle('/cluster/home/wenkai/deepgozero/data/blip2/{}/valid_data.pkl'.format(cat))