File size: 3,525 Bytes
8d11d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import mediapipe as mp
import cv2
from decord import VideoReader
import os
import numpy as np
import torch
import tqdm
from eval.fvd import compute_our_fvd


class FVD:
    def __init__(self, resolution=(224, 224)):
        self.face_detector = mp.solutions.face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5)
        self.resolution = resolution

    def detect_face(self, image):
        height, width = image.shape[:2]
        # Process the image and detect faces.
        results = self.face_detector.process(image)

        if not results.detections:  # Face not detected
            raise RuntimeError("Face not detected")

        detection = results.detections[0]  # Only use the first face in the image
        bounding_box = detection.location_data.relative_bounding_box
        xmin = int(bounding_box.xmin * width)
        ymin = int(bounding_box.ymin * height)
        face_width = int(bounding_box.width * width)
        face_height = int(bounding_box.height * height)

        # Crop the image to the bounding box.
        xmin = max(0, xmin)
        ymin = max(0, ymin)
        xmax = min(width, xmin + face_width)
        ymax = min(height, ymin + face_height)
        image = image[ymin:ymax, xmin:xmax]

        return image

    def detect_video(self, video_path):
        vr = VideoReader(video_path)
        video_frames = vr[20:36].asnumpy()
        vr.seek(0)  # avoid memory leak
        faces = []
        for frame in video_frames:
            face = self.detect_face(frame)
            face = cv2.resize(face, (self.resolution[1], self.resolution[0]), interpolation=cv2.INTER_AREA)
            faces.append(face)

        if len(faces) != 16:
            return RuntimeError("Insufficient consecutive frames of faces (less than 16).")
        faces = np.stack(faces, axis=0)  # (f, h, w, c)
        faces = torch.from_numpy(faces)
        return faces

    def detect_videos(self, videos_dir: str):
        videos_list = []

        if videos_dir.endswith(".mp4"):
            video_faces = self.detect_video(videos_dir)
            videos_list.append(video_faces)
        else:
            for file in tqdm.tqdm(os.listdir(videos_dir)):
                if file.endswith(".mp4"):
                    video_path = os.path.join(videos_dir, file)
                    video_faces = self.detect_video(video_path)
                    videos_list.append(video_faces)

        videos_list = torch.stack(videos_list) / 255.0
        return videos_list


def eval_fvd(real_videos_dir: str, fake_videos_dir: str):
    fvd = FVD()
    real_videos = fvd.detect_videos(real_videos_dir)
    fake_videos = fvd.detect_videos(fake_videos_dir)
    fvd_value = compute_our_fvd(real_videos, fake_videos, device="cpu")
    print(f"FVD: {fvd_value:.3f}")


if __name__ == "__main__":
    real_videos_dir = "dir1"
    fake_videos_dir = "dir2"
    eval_fvd(real_videos_dir, fake_videos_dir)