Spaces:
Runtime error
Runtime error
File size: 7,720 Bytes
1a2c8b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
# suppress partial model loading warning
logging.set_verbosity_error()
import os
from tqdm import tqdm, trange
import torch
import torch.nn as nn
import argparse
from torchvision.io import write_video
from pathlib import Path
from util import *
import torchvision.transforms as T
def get_timesteps(scheduler, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
@torch.no_grad()
def decode_latents(pipe, latents):
decoded = []
batch_size = 8
for b in range(0, latents.shape[0], batch_size):
latents_batch = 1 / 0.18215 * latents[b:b + batch_size]
imgs = pipe.vae.decode(latents_batch).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
decoded.append(imgs)
return torch.cat(decoded)
@torch.no_grad()
def ddim_inversion(pipe, cond, latent_frames, batch_size, save_latents=True, timesteps_to_save=None):
timesteps = reversed(pipe.scheduler.timesteps)
timesteps_to_save = timesteps_to_save if timesteps_to_save is not None else timesteps
for i, t in enumerate(tqdm(timesteps)):
for b in range(0, latent_frames.shape[0], batch_size):
x_batch = latent_frames[b:b + batch_size]
model_input = x_batch
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
#remove comment from commented block to support controlnet
# if self.sd_version == 'depth':
# depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
# model_input = torch.cat([x_batch, depth_maps],dim=1)
alpha_prod_t = pipe.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
pipe.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else pipe.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
#remove line below and replace with commented block to support controlnet
eps = pipe.unet(model_input, t, encoder_hidden_states=cond_batch).sample
# if self.sd_version != 'ControlNet':
# eps = pipe.unet(model_input, t, encoder_hidden_states=cond_batch).sample
# else:
# eps = self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
pred_x0 = (x_batch - sigma_prev * eps) / mu_prev
latent_frames[b:b + batch_size] = mu * pred_x0 + sigma * eps
# if save_latents and t in timesteps_to_save:
# torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
# torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
return latent_frames
@torch.no_grad()
def ddim_sample(pipe, x, cond, batch_size):
timesteps = pipe.scheduler.timesteps
for i, t in enumerate(tqdm(timesteps)):
for b in range(0, x.shape[0], batch_size):
x_batch = x[b:b + batch_size]
model_input = x_batch
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
#remove comment from commented block to support controlnet
# if self.sd_version == 'depth':
# depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
# model_input = torch.cat([x_batch, depth_maps],dim=1)
alpha_prod_t = pipe.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
pipe.scheduler.alphas_cumprod[timesteps[i + 1]]
if i < len(timesteps) - 1
else pipe.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
#remove line below and replace with commented block to support controlnet
eps = pipe.unet(model_input, t, encoder_hidden_states=cond_batch).sample
# if self.sd_version != 'ControlNet':
# eps = pipe.unet(model_input, t, encoder_hidden_states=cond_batch).sample
# else:
# eps = self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
pred_x0 = (x_batch - sigma * eps) / mu
x[b:b + batch_size] = mu_prev * pred_x0 + sigma_prev * eps
return x
@torch.no_grad()
def get_text_embeds(pipe, prompt, negative_prompt, batch_size=1, device="cuda"):
# Tokenize text and get embeddings
text_input = pipe.tokenizer(prompt, padding='max_length', max_length=pipe.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = pipe.text_encoder(text_input.input_ids.to(pipe.device))[0]
# Do the same for unconditional embeddings
uncond_input = pipe.tokenizer(negative_prompt, padding='max_length', max_length=pipe.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(pipe.device))[0]
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size)
return text_embeddings
@torch.no_grad()
def extract_latents(pipe,
num_steps,
latent_frames,
batch_size,
timesteps_to_save,
inversion_prompt=''):
pipe.scheduler.set_timesteps(num_steps)
cond = get_text_embeds(pipe, inversion_prompt, "", device=pipe.device)[1].unsqueeze(0)
# latent_frames = self.latents
inverted_latents = ddim_inversion(pipe, cond,
latent_frames,
batch_size=batch_size,
save_latents=False,
timesteps_to_save=timesteps_to_save)
# latent_reconstruction = ddim_sample(pipe, inverted_latents, cond, batch_size=batch_size)
# rgb_reconstruction = decode_latents(pipe, latent_reconstruction)
# return rgb_reconstruction
return inverted_latents
@torch.no_grad()
def encode_imgs(pipe, imgs, batch_size=10, deterministic=True):
imgs = 2 * imgs - 1
latents = []
for i in range(0, len(imgs), batch_size):
posterior = pipe.vae.encode(imgs[i:i + batch_size]).latent_dist
latent = posterior.mean if deterministic else posterior.sample()
latents.append(latent * 0.18215)
latents = torch.cat(latents)
return latents
def get_data(pipe, frames, n_frames):
"""
converts frames to tensors, saves to device and encodes to obtain latents
"""
frames = frames[:n_frames]
if frames[0].size[0] == frames[0].size[1]:
frames = [frame.convert("RGB").resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
stacked_tensor_frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(pipe.device)
# encode to latents
latents = encode_imgs(pipe, stacked_tensor_frames, deterministic=True).to(torch.float16).to(pipe.device)
return stacked_tensor_frames, latents
|