Spaces:
Runtime error
Runtime error
File size: 14,538 Bytes
1a2c8b5 ba508b5 1a2c8b5 ba508b5 1a2c8b5 ba508b5 1a2c8b5 ba508b5 1a2c8b5 ba508b5 1a2c8b5 ba508b5 1a2c8b5 ba508b5 1a2c8b5 ba508b5 1a2c8b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
# suppress partial model loading warning
logging.set_verbosity_error()
import os
from tqdm import tqdm, trange
import torch
import torch.nn as nn
import argparse
from torchvision.io import write_video
from pathlib import Path
from util import *
import torchvision.transforms as T
def get_timesteps(scheduler, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
class Preprocess(nn.Module):
def __init__(self, device, opt, hf_key=None):
super().__init__()
self.device = device
self.sd_version = opt["sd_version"]
self.use_depth = False
self.config = opt
print(f'[INFO] loading stable diffusion...')
if hf_key is not None:
print(f'[INFO] using hugging face custom model key: {hf_key}')
model_key = hf_key
elif self.sd_version == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif self.sd_version == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif self.sd_version == '1.5' or self.sd_version == 'ControlNet':
model_key = "runwayml/stable-diffusion-v1-5"
elif self.sd_version == 'depth':
model_key = "stabilityai/stable-diffusion-2-depth"
else:
raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
self.model_key = model_key
# Create model
self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae", revision="fp16",
torch_dtype=torch.float16).to(self.device)
self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder", revision="fp16",
torch_dtype=torch.float16).to(self.device)
self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", revision="fp16",
torch_dtype=torch.float16).to(self.device)
self.total_inverted_latents = {}
self.paths, self.frames, self.latents = self.get_data(self.config["data_path"], self.config["n_frames"])
print("self.frames", self.frames.shape)
print("self.latents", self.latents.shape)
if self.sd_version == 'ControlNet':
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16).to(self.device)
control_pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
).to(self.device)
self.unet = control_pipe.unet
self.controlnet = control_pipe.controlnet
self.canny_cond = self.get_canny_cond()
elif self.sd_version == 'depth':
self.depth_maps = self.prepare_depth_maps()
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
# self.unet.enable_xformers_memory_efficient_attention()
print(f'[INFO] loaded stable diffusion!')
@torch.no_grad()
def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
depth_maps = []
midas = torch.hub.load("intel-isl/MiDaS", model_type)
midas.to(device)
midas.eval()
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
transform = midas_transforms.dpt_transform
else:
transform = midas_transforms.small_transform
for i in range(len(self.paths)):
img = cv2.imread(self.paths[i])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
latent_h = img.shape[0] // 8
latent_w = img.shape[1] // 8
input_batch = transform(img).to(device)
prediction = midas(input_batch)
depth_map = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=(latent_h, latent_w),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
depth_maps.append(depth_map)
return torch.cat(depth_maps).to(self.device).to(torch.float16)
@torch.no_grad()
def get_canny_cond(self):
canny_cond = []
for image in self.frames.cpu().permute(0, 2, 3, 1):
image = np.uint8(np.array(255 * image))
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = torch.from_numpy((image.astype(np.float32) / 255.0))
canny_cond.append(image)
canny_cond = torch.stack(canny_cond).permute(0, 3, 1, 2).to(self.device).to(torch.float16)
return canny_cond
def controlnet_pred(self, latent_model_input, t, text_embed_input, controlnet_cond):
down_block_res_samples, mid_block_res_sample = self.controlnet(
latent_model_input,
t,
encoder_hidden_states=text_embed_input,
controlnet_cond=controlnet_cond,
conditioning_scale=1,
return_dict=False,
)
# apply the denoising network
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=text_embed_input,
cross_attention_kwargs={},
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
return noise_pred
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt, device="cuda"):
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@torch.no_grad()
def decode_latents(self, latents):
decoded = []
batch_size = 8
for b in range(0, latents.shape[0], batch_size):
latents_batch = 1 / 0.18215 * latents[b:b + batch_size]
imgs = self.vae.decode(latents_batch).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
decoded.append(imgs)
return torch.cat(decoded)
@torch.no_grad()
def encode_imgs(self, imgs, batch_size=10, deterministic=True):
imgs = 2 * imgs - 1
latents = []
for i in range(0, len(imgs), batch_size):
posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
latent = posterior.mean if deterministic else posterior.sample()
latents.append(latent * 0.18215)
latents = torch.cat(latents)
return latents
def get_data(self, frames_path, n_frames):
# load frames
if not self.config["frames"]:
paths = [f"{frames_path}/%05d.png" % i for i in range(n_frames)]
print(paths)
if not os.path.exists(paths[0]):
paths = [f"{frames_path}/%05d.jpg" % i for i in range(n_frames)]
self.paths = paths
frames = [Image.open(path).convert('RGB') for path in paths]
if frames[0].size[0] == frames[0].size[1]:
frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
else:
frames = self.config["frames"][:n_frames]
frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device)
# encode to latents
latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
print("frames", frames.shape)
print("latents", latents.shape)
if not self.config["frames"]:
return paths, frames, latents
else:
return None, frames, latents
@torch.no_grad()
def ddim_inversion(self, cond, latent_frames, save_path, batch_size, save_latents=True, timesteps_to_save=None):
timesteps = reversed(self.scheduler.timesteps)
timesteps_to_save = timesteps_to_save if timesteps_to_save is not None else timesteps
return_inverted_latents = self.config["frames"] is not None
for i, t in enumerate(tqdm(timesteps)):
for b in range(0, latent_frames.shape[0], batch_size):
x_batch = latent_frames[b:b + batch_size]
model_input = x_batch
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
if self.sd_version == 'depth':
depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
model_input = torch.cat([x_batch, depth_maps],dim=1)
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
pred_x0 = (x_batch - sigma_prev * eps) / mu_prev
latent_frames[b:b + batch_size] = mu * pred_x0 + sigma * eps
if return_inverted_latents and t in timesteps_to_save:
self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
if save_latents and t in timesteps_to_save:
torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
if save_latents:
torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
if return_inverted_latents:
self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
return latent_frames
@torch.no_grad()
def ddim_sample(self, x, cond, batch_size):
timesteps = self.scheduler.timesteps
for i, t in enumerate(tqdm(timesteps)):
for b in range(0, x.shape[0], batch_size):
x_batch = x[b:b + batch_size]
model_input = x_batch
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
if self.sd_version == 'depth':
depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
model_input = torch.cat([x_batch, depth_maps],dim=1)
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i + 1]]
if i < len(timesteps) - 1
else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
pred_x0 = (x_batch - sigma * eps) / mu
x[b:b + batch_size] = mu_prev * pred_x0 + sigma_prev * eps
return x
@torch.no_grad()
def extract_latents(self,
num_steps,
save_path,
batch_size,
timesteps_to_save,
inversion_prompt='',
reconstruct=False):
self.scheduler.set_timesteps(num_steps)
cond = self.get_text_embeds(inversion_prompt, "")[1].unsqueeze(0)
latent_frames = self.latents
print("latent_frames", latent_frames.shape)
inverted_x= self.ddim_inversion(cond,
latent_frames,
save_path,
batch_size=batch_size,
save_latents=True if save_path else False,
timesteps_to_save=timesteps_to_save)
# print("total_inverted_latents", len(total_inverted_latents.keys()))
if reconstruct:
latent_reconstruction = self.ddim_sample(inverted_x, cond, batch_size=batch_size)
rgb_reconstruction = self.decode_latents(latent_reconstruction)
return self.frames, self.latents, self.total_inverted_latents, rgb_reconstruction
return self.frames, self.latents, self.total_inverted_latents, None
|