File size: 14,538 Bytes
1a2c8b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba508b5
 
 
1a2c8b5
ba508b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2c8b5
ba508b5
 
 
 
 
 
 
 
1a2c8b5
ba508b5
 
 
 
1a2c8b5
ba508b5
 
 
 
 
 
 
 
 
1a2c8b5
ba508b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2c8b5
ba508b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2c8b5
ba508b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a2c8b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
# suppress partial model loading warning
logging.set_verbosity_error()

import os
from tqdm import tqdm, trange
import torch
import torch.nn as nn
import argparse
from torchvision.io import write_video
from pathlib import Path
from util import *
import torchvision.transforms as T


def get_timesteps(scheduler, num_inference_steps, strength, device):
    # get the original timestep using init_timestep
    init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

    t_start = max(num_inference_steps - init_timestep, 0)
    timesteps = scheduler.timesteps[t_start:]

    return timesteps, num_inference_steps - t_start


class Preprocess(nn.Module):
    def __init__(self, device, opt, hf_key=None):
        super().__init__()

        self.device = device
        self.sd_version = opt["sd_version"]
        self.use_depth = False
        self.config = opt

        print(f'[INFO] loading stable diffusion...')
        if hf_key is not None:
            print(f'[INFO] using hugging face custom model key: {hf_key}')
            model_key = hf_key
        elif self.sd_version == '2.1':
            model_key = "stabilityai/stable-diffusion-2-1-base"
        elif self.sd_version == '2.0':
            model_key = "stabilityai/stable-diffusion-2-base"
        elif self.sd_version == '1.5' or self.sd_version == 'ControlNet':
            model_key = "runwayml/stable-diffusion-v1-5"
        elif self.sd_version == 'depth':
            model_key = "stabilityai/stable-diffusion-2-depth"
        else:
            raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
        self.model_key = model_key
        # Create model
        self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae", revision="fp16",
                                                 torch_dtype=torch.float16).to(self.device)
        self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
        self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder", revision="fp16",
                                                          torch_dtype=torch.float16).to(self.device)
        self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", revision="fp16",
                                                   torch_dtype=torch.float16).to(self.device)
        self.total_inverted_latents = {}
        
        self.paths, self.frames, self.latents = self.get_data(self.config["data_path"], self.config["n_frames"])
        print("self.frames", self.frames.shape)
        print("self.latents", self.latents.shape)
        
        
        if self.sd_version == 'ControlNet':
            from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
            controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16).to(self.device)
            control_pipe = StableDiffusionControlNetPipeline.from_pretrained(
                "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
            ).to(self.device)
            self.unet = control_pipe.unet
            self.controlnet = control_pipe.controlnet
            self.canny_cond = self.get_canny_cond()
        elif self.sd_version == 'depth':
            self.depth_maps = self.prepare_depth_maps()
        self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
        
        # self.unet.enable_xformers_memory_efficient_attention()
        print(f'[INFO] loaded stable diffusion!')
        
    @torch.no_grad()   
    def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
        depth_maps = []
        midas = torch.hub.load("intel-isl/MiDaS", model_type)
        midas.to(device)
        midas.eval()

        midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")

        if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
            transform = midas_transforms.dpt_transform
        else:
            transform = midas_transforms.small_transform

        for i in range(len(self.paths)):
            img = cv2.imread(self.paths[i])
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

            latent_h = img.shape[0] // 8
            latent_w = img.shape[1] // 8
            
            input_batch = transform(img).to(device)
            prediction = midas(input_batch)

            depth_map = torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=(latent_h, latent_w),
                mode="bicubic",
                align_corners=False,
            )
            depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
            depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
            depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
            depth_maps.append(depth_map)

        return torch.cat(depth_maps).to(self.device).to(torch.float16)
    
    @torch.no_grad()
    def get_canny_cond(self):
        canny_cond = []
        for image in self.frames.cpu().permute(0, 2, 3, 1):
            image = np.uint8(np.array(255 * image))
            low_threshold = 100
            high_threshold = 200

            image = cv2.Canny(image, low_threshold, high_threshold)
            image = image[:, :, None]
            image = np.concatenate([image, image, image], axis=2)
            image = torch.from_numpy((image.astype(np.float32) / 255.0))
            canny_cond.append(image)
        canny_cond = torch.stack(canny_cond).permute(0, 3, 1, 2).to(self.device).to(torch.float16)
        return canny_cond
    
    def controlnet_pred(self, latent_model_input, t, text_embed_input, controlnet_cond):
        down_block_res_samples, mid_block_res_sample = self.controlnet(
            latent_model_input,
            t,
            encoder_hidden_states=text_embed_input,
            controlnet_cond=controlnet_cond,
            conditioning_scale=1,
            return_dict=False,
        )
        
        # apply the denoising network
        noise_pred = self.unet(
            latent_model_input,
            t,
            encoder_hidden_states=text_embed_input,
            cross_attention_kwargs={},
            down_block_additional_residuals=down_block_res_samples,
            mid_block_additional_residual=mid_block_res_sample,
            return_dict=False,
        )[0]
        return noise_pred
    
    @torch.no_grad()
    def get_text_embeds(self, prompt, negative_prompt, device="cuda"):
        text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
                                    truncation=True, return_tensors='pt')
        text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
        uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
                                      return_tensors='pt')
        uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
        return text_embeddings

    @torch.no_grad()
    def decode_latents(self, latents):
        decoded = []
        batch_size = 8
        for b in range(0, latents.shape[0], batch_size):
                latents_batch = 1 / 0.18215 * latents[b:b + batch_size]
                imgs = self.vae.decode(latents_batch).sample
                imgs = (imgs / 2 + 0.5).clamp(0, 1)
                decoded.append(imgs)
        return torch.cat(decoded)

    @torch.no_grad()
    def encode_imgs(self, imgs, batch_size=10, deterministic=True):
        imgs = 2 * imgs - 1
        latents = []
        for i in range(0, len(imgs), batch_size):
            posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
            latent = posterior.mean if deterministic else posterior.sample()
            latents.append(latent * 0.18215)
        latents = torch.cat(latents)
        return latents

    def get_data(self, frames_path, n_frames):
        
        # load frames
        if not self.config["frames"]:
            paths =  [f"{frames_path}/%05d.png" % i for i in range(n_frames)]
            print(paths)
            if not os.path.exists(paths[0]):
                paths = [f"{frames_path}/%05d.jpg" % i for i in range(n_frames)]
            self.paths = paths
            frames = [Image.open(path).convert('RGB') for path in paths]
            if frames[0].size[0] == frames[0].size[1]:
                frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
        else:
            frames = self.config["frames"][:n_frames]
        frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device)
        # encode to latents
        latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
        print("frames", frames.shape)
        print("latents", latents.shape)
        
        if not self.config["frames"]:
            return paths, frames, latents
        else:
            return None, frames, latents

    @torch.no_grad()
    def ddim_inversion(self, cond, latent_frames, save_path, batch_size, save_latents=True, timesteps_to_save=None):
        timesteps = reversed(self.scheduler.timesteps)
        timesteps_to_save = timesteps_to_save if timesteps_to_save is not None else timesteps
        
        return_inverted_latents = self.config["frames"] is not None
        for i, t in enumerate(tqdm(timesteps)):
            for b in range(0, latent_frames.shape[0], batch_size):
                x_batch = latent_frames[b:b + batch_size]
                model_input = x_batch
                cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
                if self.sd_version == 'depth':
                    depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
                    model_input = torch.cat([x_batch, depth_maps],dim=1)
                                                                    
                alpha_prod_t = self.scheduler.alphas_cumprod[t]
                alpha_prod_t_prev = (
                    self.scheduler.alphas_cumprod[timesteps[i - 1]]
                    if i > 0 else self.scheduler.final_alpha_cumprod
                )

                mu = alpha_prod_t ** 0.5
                mu_prev = alpha_prod_t_prev ** 0.5
                sigma = (1 - alpha_prod_t) ** 0.5
                sigma_prev = (1 - alpha_prod_t_prev) ** 0.5

                eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
                    else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
                pred_x0 = (x_batch - sigma_prev * eps) / mu_prev
                latent_frames[b:b + batch_size] = mu * pred_x0 + sigma * eps
            
            if return_inverted_latents and t in timesteps_to_save:
                self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
    
            if save_latents and t in timesteps_to_save:
                torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
        
        if save_latents:
            torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
        if return_inverted_latents:
            self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()

        return latent_frames

    @torch.no_grad()
    def ddim_sample(self, x, cond, batch_size):
        timesteps = self.scheduler.timesteps
        for i, t in enumerate(tqdm(timesteps)):
            for b in range(0, x.shape[0], batch_size):
                x_batch = x[b:b + batch_size]
                model_input = x_batch
                cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
                
                if self.sd_version == 'depth':
                    depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
                    model_input = torch.cat([x_batch, depth_maps],dim=1)
                
                alpha_prod_t = self.scheduler.alphas_cumprod[t]
                alpha_prod_t_prev = (
                    self.scheduler.alphas_cumprod[timesteps[i + 1]]
                    if i < len(timesteps) - 1
                    else self.scheduler.final_alpha_cumprod
                )
                mu = alpha_prod_t ** 0.5
                sigma = (1 - alpha_prod_t) ** 0.5
                mu_prev = alpha_prod_t_prev ** 0.5
                sigma_prev = (1 - alpha_prod_t_prev) ** 0.5

                eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
                    else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))

                pred_x0 = (x_batch - sigma * eps) / mu
                x[b:b + batch_size] = mu_prev * pred_x0 + sigma_prev * eps
        return x

    @torch.no_grad()
    def extract_latents(self, 
                        num_steps,
                        save_path,
                        batch_size,
                        timesteps_to_save,
                        inversion_prompt='',
                       reconstruct=False):
        self.scheduler.set_timesteps(num_steps)
        cond = self.get_text_embeds(inversion_prompt, "")[1].unsqueeze(0)
        latent_frames = self.latents
        print("latent_frames", latent_frames.shape)
  
        inverted_x= self.ddim_inversion(cond,
                                         latent_frames,
                                         save_path,
                                         batch_size=batch_size,
                                         save_latents=True if save_path else False,
                                         timesteps_to_save=timesteps_to_save)


       
        # print("total_inverted_latents", len(total_inverted_latents.keys()))
        
        if reconstruct:
            latent_reconstruction = self.ddim_sample(inverted_x, cond, batch_size=batch_size)

            rgb_reconstruction = self.decode_latents(latent_reconstruction)
            return self.frames, self.latents, self.total_inverted_latents, rgb_reconstruction

        return self.frames, self.latents, self.total_inverted_latents, None