File size: 7,860 Bytes
ce3552b
 
 
 
3f6a115
94ca5b6
 
b05fbf1
 
94ca5b6
b05fbf1
527bf99
ce3552b
 
98c2a34
b05fbf1
 
 
94ca5b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05fbf1
94ca5b6
 
d75def4
94ca5b6
941bc2f
ce3552b
94ca5b6
 
527bf99
 
 
fc8546c
ce3552b
 
 
 
 
cb48ec9
ce3552b
 
d42756a
ce3552b
b05fbf1
9e3f56f
b05fbf1
9e3f56f
b05fbf1
 
 
 
 
 
ce3552b
527bf99
b05fbf1
 
527bf99
 
 
 
b05fbf1
527bf99
ce3552b
 
 
 
 
5f09b9a
 
ce3552b
 
 
 
d09bee2
e84f604
79488ea
b05fbf1
 
 
2443dbf
b05fbf1
 
 
 
 
da9710b
fce9e32
94ca5b6
d1c3f6b
94ca5b6
d2336e9
1007b31
fce9e32
 
 
 
 
 
 
 
 
 
251a915
b05fbf1
 
2bd0d19
b05fbf1
 
fce9e32
da9710b
b05fbf1
2104e5b
 
 
527bf99
b05fbf1
62ee62a
b05fbf1
94ca5b6
527bf99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import numpy as np
import cv2
from PIL import Image
import torch
import base64
import requests 
import random
import os
from io import BytesIO
from region_control import MultiDiffusion, get_views, preprocess_mask, seed_everything
from sketch_helper import get_high_freq_colors, color_quantization, create_binary_matrix
MAX_COLORS = 12

sd = MultiDiffusion("cuda", "2.1")
is_shared_ui = True if "weizmannscience/multidiffusion-region-based" in os.environ['SPACE_ID'] else False
is_gpu_associated = True if torch.cuda.is_available() else False
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
fetch(url)
  .then(res => res.text())
  .then(text => {
    const script = document.createElement('script');
    script.type = "module"
    script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
    document.head.appendChild(script);
  });
}
"""

get_js_colors = """
async (canvasData) => {
  const canvasEl = document.getElementById("canvas-root");
  return [canvasEl._data]
}
"""

set_canvas_size ="""
async (aspect) => {
  if(aspect ==='square'){
    _updateCanvas(512,512)
  }
  if(aspect ==='horizontal'){
    _updateCanvas(768,512)
  }
  if(aspect ==='vertical'){
    _updateCanvas(512,768)
  }
}
"""

def process_sketch(canvas_data, binary_matrixes):
  binary_matrixes.clear()
  base64_img = canvas_data['image']
  image_data = base64.b64decode(base64_img.split(',')[1])
  image = Image.open(BytesIO(image_data)).convert("RGB")
  im2arr = np.array(image)
  colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in canvas_data['colors']]
  colors_fixed = []
  for color in colors:
    r, g, b = color
    if any(c != 255 for c in (r, g, b)):
      binary_matrix = create_binary_matrix(im2arr, (r,g,b))
      binary_matrixes.append(binary_matrix)
      colors_fixed.append(gr.update(value=f'<div style="display:flex;align-items: center;justify-content: center"><img width="20%" style="margin-right: 1em" src="file/{binary_matrix}" /><div class="color-bg-item" style="background-color: rgb({r},{g},{b})"></div></div>'))
  visibilities = []
  colors = []
  for n in range(MAX_COLORS):
    visibilities.append(gr.update(visible=False))
    colors.append(gr.update(value=f'<div class="color-bg-item" style="background-color: black"></div>'))
  for n in range(len(colors_fixed)):
    visibilities[n] = gr.update(visible=True)
    colors[n] = colors_fixed[n]
  return [gr.update(visible=True), binary_matrixes, *visibilities, *colors]

def process_generation(model, binary_matrixes, boostrapping, aspect, steps, seed, master_prompt, negative_prompt, *prompts):
    global sd
    if(model != "stabilityai/stable-diffusion-2-1-base"):
      sd = MultiDiffusion("cuda", model)
    if(seed == -1):
      seed = random.randint(1, 2147483647)
    seed_everything(seed)   
    dimensions = {"square": (512, 512), "horizontal": (768, 512), "vertical": (512, 768)}
    width, height = dimensions.get(aspect, dimensions["square"])  
    
    clipped_prompts = prompts[:len(binary_matrixes)]
    prompts = [master_prompt] + list(clipped_prompts)
    neg_prompts = [negative_prompt] * len(prompts)
    fg_masks = torch.cat([preprocess_mask(mask_path, height // 8, width // 8, "cuda") for mask_path in binary_matrixes])
    bg_mask = 1 - torch.sum(fg_masks, dim=0, keepdim=True)
    bg_mask[bg_mask < 0] = 0
    masks = torch.cat([bg_mask, fg_masks])
    print(masks.size())
    image = sd.generate(masks, prompts, neg_prompts, height, width, steps, bootstrapping=boostrapping)
    return(image)

css = '''
#color-bg{display:flex;justify-content: center;align-items: center;}
.color-bg-item{width: 100%; height: 32px}
#main_button{width:100%}
<style>

'''

with gr.Blocks(css=css) as demo:
  binary_matrixes = gr.State([])
  gr.Markdown('''## Control your Stable Diffusion generation with Sketches (_beta_)
  A beta version demo of [MultiDiffusion](https://arxiv.org/abs/2302.08113) region-based generation using Stable Diffusion 2.1 model. To get started, draw your masks and type your prompts. More details in the [project page](https://multidiffusion.github.io).
  ''')

  if(is_shared_ui):
    gr.HTML(f'''
           <div style="margin-top:-20px">To skip the queue or try the technique with custom models, you may duplicate the space and associate an A10 GPU to it &nbsp;&nbsp;<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></div>
    ''')
  elif(not is_gpu_associated):
      gr.HTML(f'''
           <div>You have succesfully duplicated the Space 🎉, but it is running on CPU - which may break this application. Go to the <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">settings</a> page to associate a GPU to it</div>
      ''')
  with gr.Row():
    with gr.Box(elem_id="main-image"):
      canvas_data = gr.JSON(value={}, visible=False)
      model = gr.Textbox(label="The id of any Hugging Face model in the diffusers format", value="stabilityai/stable-diffusion-2-1-base", visible=False if is_shared_ui else True)
      canvas = gr.HTML(canvas_html)
      aspect = gr.Radio(["square", "horizontal", "vertical"], value="square", label="Aspect Ratio", visible=False if is_shared_ui else True)
      button_run = gr.Button("I've finished my sketch",elem_id="main_button", interactive=True)
      
      prompts = []
      colors = []
      color_row = [None] * MAX_COLORS
      with gr.Column(visible=False) as post_sketch:
        general_prompt = gr.Textbox(label="General Prompt")
        for n in range(MAX_COLORS):
          with gr.Row(visible=False) as color_row[n]:
            with gr.Box(elem_id="color-bg"):
              colors.append(gr.HTML('<div class="color-bg-item" style="background-color: black"></div>'))
            prompts.append(gr.Textbox(label="Prompt for this mask"))
        with gr.Accordion("Advanced options", open=False):
          negative_prompt = gr.Textbox(label="Global negative prompt for all prompts", value="low quality")
          boostrapping = gr.Slider(label="Bootstrapping", minimum=1, maximum=100, value=10, step=1)
          steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
          seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=-1, step=1)
        final_run_btn = gr.Button("Generate!")
    
    out_image = gr.Image(label="Result", ).style(width=512,height=512)
  gr.Markdown('''
  ![Examples](https://multidiffusion.github.io/pics/tight.jpg)
  ''')
  #css_height = gr.HTML("<style>#main-image{width: 512px} .fixed-height{height: 512px !important}</style>")
  aspect.change(None, inputs=[aspect], outputs=None, _js = set_canvas_size)
  button_run.click(process_sketch, inputs=[canvas_data, binary_matrixes], outputs=[post_sketch, binary_matrixes, *color_row, *colors], _js=get_js_colors, queue=False)
  final_run_btn.click(process_generation, inputs=[model, binary_matrixes, boostrapping, aspect, steps, seed, general_prompt, negative_prompt, *prompts], outputs=out_image)
  demo.load(None, None, None, _js=load_js)
demo.launch(debug=True)