Spaces:
Build error
Build error
File size: 5,748 Bytes
0ab9a32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import time
import torch
import cv2
from PIL import Image, ImageDraw, ImageOps
import numpy as np
from typing import Union
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator
import matplotlib.pyplot as plt
import PIL
class BaseSegmenter:
def __init__(self, device, checkpoint, model_type='vit_h', reuse_feature = True, model=None):
print(f"Initializing BaseSegmenter to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.processor = None
self.model_type = model_type
if model is None:
self.checkpoint = checkpoint
self.model = sam_model_registry[self.model_type](checkpoint=self.checkpoint)
self.model.to(device=self.device)
else:
self.model = model
self.reuse_feature = reuse_feature
self.predictor = SamPredictor(self.model)
self.mask_generator = SamAutomaticMaskGenerator(self.model)
self.image_embedding = None
self.image = None
@torch.no_grad()
def set_image(self, image: Union[np.ndarray, Image.Image, str]):
if type(image) == str: # input path
image = Image.open(image)
image = np.array(image)
elif type(image) == Image.Image:
image = np.array(image)
self.image = image
if self.reuse_feature:
self.predictor.set_image(image)
self.image_embedding = self.predictor.get_image_embedding()
print(self.image_embedding.shape)
@torch.no_grad()
def inference(self, image, control):
if 'everything' in control['prompt_type']:
masks = self.mask_generator.generate(image)
new_masks = np.concatenate([mask["segmentation"][np.newaxis,:] for mask in masks])
return new_masks
else:
if not self.reuse_feature or self.image_embedding is None:
self.set_image(image)
self.predictor.set_image(self.image)
else:
assert self.image_embedding is not None
self.predictor.features = self.image_embedding
if 'mutimask_output' in control:
masks, scores, logits = self.predictor.predict(
point_coords = np.array(control['input_point']),
point_labels = np.array(control['input_label']),
multimask_output = True,
)
elif 'input_boxes' in control:
transformed_boxes = self.predictor.transform.apply_boxes_torch(
torch.tensor(control["input_boxes"], device=self.predictor.device),
image.shape[:2]
)
masks, _, _ = self.predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
masks = masks.squeeze(1).cpu().numpy()
else:
input_point = np.array(control['input_point']) if 'click' in control['prompt_type'] else None
input_label = np.array(control['input_label']) if 'click' in control['prompt_type'] else None
input_box = np.array(control['input_box']) if 'box' in control['prompt_type'] else None
masks, scores, logits = self.predictor.predict(
point_coords = input_point,
point_labels = input_label,
box = input_box,
multimask_output = False,
)
if 0 in control['input_label']:
mask_input = logits[np.argmax(scores), :, :]
masks, scores, logits = self.predictor.predict(
point_coords=input_point,
point_labels=input_label,
box = input_box,
mask_input=mask_input[None, :, :],
multimask_output=False,
)
return masks
if __name__ == "__main__":
image_path = 'segmenter/images/truck.jpg'
prompts = [
# {
# "prompt_type":["click"],
# "input_point":[[500, 375]],
# "input_label":[1],
# "multimask_output":"True",
# },
{
"prompt_type":["click"],
"input_point":[[1000, 600], [1325, 625]],
"input_label":[1, 0],
},
# {
# "prompt_type":["click", "box"],
# "input_box":[425, 600, 700, 875],
# "input_point":[[575, 750]],
# "input_label": [0]
# },
# {
# "prompt_type":["box"],
# "input_boxes": [
# [75, 275, 1725, 850],
# [425, 600, 700, 875],
# [1375, 550, 1650, 800],
# [1240, 675, 1400, 750],
# ]
# },
# {
# "prompt_type":["everything"]
# },
]
init_time = time.time()
segmenter = BaseSegmenter(
device='cuda',
# checkpoint='sam_vit_h_4b8939.pth',
checkpoint='segmenter/sam_vit_h_4b8939.pth',
model_type='vit_h',
reuse_feature=True
)
print(f'init time: {time.time() - init_time}')
image_path = 'test_img/img2.jpg'
infer_time = time.time()
for i, prompt in enumerate(prompts):
print(f'{prompt["prompt_type"]} mode')
image = Image.open(image_path)
segmenter.set_image(np.array(image))
masks = segmenter.inference(np.array(image), prompt)
Image.fromarray(masks[0]).save('seg.png')
print(masks.shape)
print(f'infer time: {time.time() - infer_time}')
|