File size: 10,536 Bytes
0ab9a32
 
 
 
 
 
 
40bbb34
0ab9a32
 
 
 
 
 
 
 
 
 
40bbb34
0ab9a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40bbb34
 
0ab9a32
 
 
 
 
 
 
 
 
 
 
 
 
 
40bbb34
 
0ab9a32
40bbb34
0ab9a32
40bbb34
 
 
 
 
0ab9a32
40bbb34
 
 
0ab9a32
40bbb34
 
 
0ab9a32
 
 
40bbb34
 
0ab9a32
 
 
 
8ac8977
0ab9a32
 
 
40bbb34
 
 
 
 
0ab9a32
40bbb34
 
76e50b1
8ac8977
0ab9a32
40bbb34
 
 
0bfd6ca
24ff5c7
40bbb34
 
 
 
 
 
 
 
 
0ab9a32
 
 
 
 
 
 
 
 
 
 
 
 
40bbb34
0ab9a32
 
40bbb34
0ab9a32
9c026e6
0ab9a32
 
 
40bbb34
0ab9a32
 
8ac8977
0ab9a32
 
 
 
 
 
 
 
 
 
40bbb34
 
0ab9a32
40bbb34
0ab9a32
 
 
 
 
 
 
 
 
 
40bbb34
0ab9a32
 
 
 
 
 
40bbb34
0ab9a32
 
 
40bbb34
 
 
 
 
 
 
 
0ab9a32
 
40bbb34
0ab9a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40bbb34
 
0ab9a32
40bbb34
 
 
 
 
 
 
 
 
 
 
 
 
0ab9a32
 
 
40bbb34
 
0ab9a32
 
 
 
40bbb34
0ab9a32
 
 
40bbb34
0ab9a32
 
 
40bbb34
0ab9a32
 
 
 
 
 
 
 
 
 
40bbb34
 
0ab9a32
 
 
40bbb34
0ab9a32
 
 
 
40bbb34
 
 
 
 
 
 
 
 
 
 
ab8d7ff
40bbb34
 
 
 
 
ab8d7ff
40bbb34
0ab9a32
 
 
 
 
 
 
 
 
 
 
40bbb34
0ab9a32
40bbb34
0ab9a32
 
c8cfbb8
f82f439
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from io import BytesIO
import string
import gradio as gr
import requests
from caption_anything import CaptionAnything
import torch
import json
from diffusers import StableDiffusionInpaintPipeline
import sys
import argparse
from caption_anything import parse_augment
import numpy as np
import PIL.ImageDraw as ImageDraw
from image_editing_utils import create_bubble_frame
import copy
from tools import mask_painter
from PIL import Image
import os
import cv2

def download_checkpoint(url, folder, filename):
    os.makedirs(folder, exist_ok=True)
    filepath = os.path.join(folder, filename)

    if not os.path.exists(filepath):
        response = requests.get(url, stream=True)
        with open(filepath, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                if chunk:
                    f.write(chunk)

    return filepath
checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
folder = "segmenter"
filename = "sam_vit_h_4b8939.pth"

download_checkpoint(checkpoint_url, folder, filename)


title = """<h1 align="center">Edit Anything</h1>"""
description = """Gradio demo for Segment Anything, image to dense Segment generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. 
"""

examples = [
    ["test_img/img35.webp"],
    ["test_img/img2.jpg"],
    ["test_img/img5.jpg"],
    ["test_img/img12.jpg"],
    ["test_img/img14.jpg"],
    ["test_img/img0.png"],
    ["test_img/img1.jpg"],
]

args = parse_augment()
# args.device = 'cuda:5'
# args.disable_gpt = False
# args.enable_reduce_tokens = True
# args.port=20322
model = CaptionAnything(args)

def init_openai_api_key(api_key):
    # os.environ['OPENAI_API_KEY'] = api_key
    model.init_refiner(api_key)
    openai_available = model.text_refiner is not None
    return gr.update(visible = openai_available), gr.update(visible = openai_available), gr.update(visible = openai_available), gr.update(visible = True), gr.update(visible = True)

def get_prompt(chat_input, click_state):    
    points = click_state[0]
    labels = click_state[1]
    inputs = json.loads(chat_input)
    for input in inputs:
        points.append(input[:2])
        labels.append(input[2])
    
    prompt = {
        "prompt_type":["click"],
        "input_point":points,
        "input_label":labels,
        "multimask_output":"True",
    }
    return prompt

def chat_with_points(chat_input, click_state, state, mask,image_input):
    
    points, labels, captions = click_state
    
    
    # inpainting
    pipe = StableDiffusionInpaintPipeline.from_pretrained(
        "stabilityai/stable-diffusion-2-inpainting",
        torch_dtype=torch.float32,
    )


    pipe = pipe
    # mask = cv2.imread(mask_save_path)
    
    image_input = np.array(image_input)
    h,w = image_input.shape[:2]
    
    image = cv2.resize(image_input,(512,512))
    mask = cv2.resize(mask,(512,512)).astype(np.uint8)
    print(image.shape,mask.shape)
    print("chat_input:",chat_input)
    image = pipe(prompt=chat_input, image=image, mask_image=mask).images[0]
    image = image.resize((w,h))
    
#     image = Image.fromarray(image, mode='RGB')
    return state, state, image

def inference_seg_cap(image_input, point_prompt, language, sentiment, factuality, length, state, click_state, evt:gr.SelectData):

    if point_prompt == 'Positive':
        coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1]))
    else:
        coordinate = "[[{}, {}, 0]]".format(str(evt.index[0]), str(evt.index[1]))
        
    controls = {'length': length,
             'sentiment': sentiment,
             'factuality': factuality,
             'language': language}

    # click_coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1])) 
    # chat_input = click_coordinate
    prompt = get_prompt(coordinate, click_state)
    print('prompt: ', prompt, 'controls: ', controls)

    out = model.inference(image_input, prompt, controls)
    state = state + [(None, "Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]))]

    input_mask = np.array(out['mask'].convert('P'))
    image_input = mask_painter(np.array(image_input), input_mask)
    origin_image_input = image_input
    text = "edit"
    image_input = create_bubble_frame(image_input, text, (evt.index[0], evt.index[1]))

    yield state, state, click_state, image_input, input_mask

def upload_callback(image_input, state):
    state = [] + [('Image size: ' + str(image_input.size), None)]
    click_state = [[], [], []]
    res = 1024
    width, height = image_input.size
    ratio = min(1.0 * res / max(width, height), 1.0)
    if ratio < 1.0:
        image_input = image_input.resize((int(width * ratio), int(height * ratio)))
        print('Scaling input image to {}'.format(image_input.size))
    model.segmenter.image = None
    model.segmenter.image_embedding = None
    model.segmenter.set_image(image_input)
    return state, image_input, click_state, image_input

with gr.Blocks(
    css='''
    #image_upload{min-height:400px}
    #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 600px}
    '''
) as iface:
    state = gr.State([])
    click_state = gr.State([[],[],[]])
    origin_image = gr.State(None)
    mask_save_path = gr.State(None)

    gr.Markdown(title)
    gr.Markdown(description)

    with gr.Row():
        with gr.Column(scale=1.0):
            with gr.Column(visible=True) as modules_not_need_gpt:
                image_input = gr.Image(type="pil", interactive=True, elem_id="image_upload")
                example_image = gr.Image(type="pil", interactive=False, visible=False)
                with gr.Row(scale=1.0):
                    point_prompt = gr.Radio(
                        choices=["Positive",  "Negative"],
                        value="Positive",
                        label="Point Prompt",
                        interactive=True)
                    clear_button_clike = gr.Button(value="Clear Clicks", interactive=True)
                    clear_button_image = gr.Button(value="Clear Image", interactive=True)
            with gr.Column(visible=True) as modules_need_gpt:
                with gr.Row(scale=1.0):
                    language = gr.Dropdown(['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"], value="English", label="Language", interactive=True)
                
                    sentiment = gr.Radio(
                        choices=["Positive", "Natural", "Negative"],
                        value="Natural",
                        label="Sentiment",
                        interactive=True,
                    )
                with gr.Row(scale=1.0):
                    factuality = gr.Radio(
                        choices=["Factual", "Imagination"],
                        value="Factual",
                        label="Factuality",
                        interactive=True,
                    )
                    length = gr.Slider(
                        minimum=10,
                        maximum=80,
                        value=10,
                        step=1,
                        interactive=True,
                        label="Length",
                    )
        
        with gr.Column(scale=0.5):
#             openai_api_key = gr.Textbox(
#                 placeholder="Input openAI API key and press Enter (Input blank will disable GPT)",
#                 show_label=False,
#                 label = "OpenAI API Key",
#                 lines=1,
#                 type="password"
#                 )
#             with gr.Column(visible=True) as modules_need_gpt2:
#                 wiki_output = gr.Textbox(lines=6, label="Wiki")
            with gr.Column(visible=True) as modules_not_need_gpt2:
                chatbot = gr.Chatbot(label="History",).style(height=450,scale=0.5)
                with gr.Column(visible=True) as modules_need_gpt3:
                    chat_input = gr.Textbox(lines=1, label="Edit Prompt")
                    with gr.Row():
                        clear_button_text = gr.Button(value="Clear Text", interactive=True)
                        submit_button_text = gr.Button(value="Submit", interactive=True, variant="primary")
                    
#     openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key], outputs=[modules_need_gpt,modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2])
    
    clear_button_clike.click(
        lambda x: ([[], [], []], x, ""),
        [origin_image],
        [click_state, image_input],
        queue=False,
        show_progress=False
    )
    
    clear_button_image.click(
        lambda: (None, [], [], [[], [], []], "", ""),
        [],
        [image_input, chatbot, state, click_state, origin_image],
        queue=False,
        show_progress=False
    )
    clear_button_text.click(
        lambda: ([], [], [[], [], []]),
        [],
        [chatbot, state, click_state],
        queue=False,
        show_progress=False
    )
    
    
    image_input.clear(
        lambda: (None, [], [], [[], [], []], "", ""),
        [],
        [image_input, chatbot, state, click_state, origin_image],
        queue=False,
        show_progress=False
    )

    def example_callback(x):
        model.image_embedding = None
        return x
        
    gr.Examples(
        examples=examples,
        inputs=[example_image],
    )
    
    submit_button_text.click(
        chat_with_points,
        [chat_input, click_state, state, mask_save_path,origin_image],
        [chatbot, state, image_input]
    )
    
    
    image_input.upload(upload_callback,[image_input, state], [state, origin_image, click_state, image_input])
    chat_input.submit(chat_with_points, [chat_input, click_state, state, mask_save_path,origin_image], [chatbot, state, image_input])
    example_image.change(upload_callback,[example_image, state], [state, origin_image, click_state, image_input])

    # select coordinate
    image_input.select(inference_seg_cap, 
        inputs=[
        origin_image,
        point_prompt,
        language,
        sentiment,
        factuality,
        length,
        state,
        click_state
        ],
        outputs=[chatbot, state, click_state, image_input, mask_save_path],
        show_progress=False, queue=True)
    
iface.queue(concurrency_count=3, api_open=False, max_size=10)
iface.launch(server_name="0.0.0.0", enable_queue=True)