Spaces:
Sleeping
Sleeping
File size: 25,886 Bytes
3edce46 d0c7c87 3edce46 d0c7c87 3edce46 d0c7c87 0246907 3edce46 d0c7c87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
import streamlit as st
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import plotly.express as px
import numpy as np
import plotly.graph_objects as go
# from blend_logic import run_dummy_prediction
##---- fucntions ------
import pandas as pd
import streamlit as st
# Load fuel data from CSV (create this file if it doesn't exist)
FUEL_CSV_PATH = "fuel_properties.csv"
def load_fuel_data():
"""Load fuel data from CSV or create default if not exists"""
try:
df = pd.read_csv(FUEL_CSV_PATH, index_col=0)
return df.to_dict('index')
except FileNotFoundError:
# Create default fuel properties if file doesn't exist
default_fuels = {
"Gasoline": {f"Property{i+1}": round(0.7 + (i*0.02), 1) for i in range(10)},
"Diesel": {f"Property{i+1}": round(0.8 + (i*0.02), 1) for i in range(10)},
"Ethanol": {f"Property{i+1}": round(0.75 + (i*0.02), 1) for i in range(10)},
"Biodiesel": {f"Property{i+1}": round(0.85 + (i*0.02), 1) for i in range(10)},
"Jet Fuel": {f"Property{i+1}": round(0.78 + (i*0.02), 1) for i in range(10)}
}
pd.DataFrame(default_fuels).T.to_csv(FUEL_CSV_PATH)
return default_fuels
# Initialize or load fuel data
if 'FUEL_PROPERTIES' not in st.session_state:
st.session_state.FUEL_PROPERTIES = load_fuel_data()
def save_fuel_data():
"""Save current fuel data to CSV"""
pd.DataFrame(st.session_state.FUEL_PROPERTIES).T.to_csv(FUEL_CSV_PATH)
# FUEL_PROPERTIES = st.session_state.FUEL_PROPERTIES
# ---------------------- Page Config ----------------------
st.set_page_config(
layout="wide",
page_title="Eagle Blend Optimizer",
page_icon="π¦
",
initial_sidebar_state="expanded"
)
# ---------------------- Custom Styling ---------------------- ##e0e0e0;
st.markdown("""
<style>
.block-container {
padding-top: 1rem;
}
/* Main app background */
.stApp {
background-color: #f8f5f0;
overflow: visible;
padding-top: 0
}
/* Remove unnecessary space at the top */
/* Remove any fixed headers */
.stApp > header {
position: static !important;
}
/* Header styling */
.header {
background: linear-gradient(135deg, #654321 0%, #8B4513 100%);
color: white;
padding: 2rem 1rem;
margin-bottom: 2rem;
border-radius: 0 0 15px 15px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
/* Metric card styling */
.metric-card {
background: #ffffff; /* Pure white cards for contrast */
border-radius: 10px;
padding: 1.5rem;
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.15);
height: 100%;
transition: all 0.3s ease;
border: 1px solid #CFB53B;
}
.metric-card:hover {
transform: translateY(-3px);
background: #FFF8E1; /* Very light blue tint on hover */
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.2);
border-color: #8B4513;
}
/* Metric value styling */
.metric-value {
color: #8B4513 !important; /* Deep, vibrant blue */
font-weight: 700;
font-size: 1.8rem;
text-shadow: 0 1px 2px rgba(0, 82, 204, 0.1);
}
/* Metric label styling */
.metric-label {
color: #654321; /* Navy blue-gray */
font-weight: 600;
letter-spacing: 0.5px;
}
/* Metric delta styling */
.metric-delta {
color: #A67C52; /* Medium blue-gray */
font-size: 0.9rem;
font-weight: 500;
}
/* Tab styling */
/* Main tab container */
.stTabs [data-baseweb="tab-list"] {
display: flex;
justify-content: center;
gap: 6px;
padding: 8px;
margin: 0 auto;
width: 95% !important;
}
/* Individual tabs */
.stTabs [data-baseweb="tab"] {
flex: 1; /* Equal width distribution */
min-width: 0; /* Allows flex to work */
height: 60px; /* Fixed height or use aspect ratio */
padding: 0 12px;
margin: 0;
font-weight: 600;
font-size: 1rem;
color: #654321;
background: #FFF8E1;
border: 2px solid #CFB53B;
border-radius: 12px;
transition: all 0.3s ease;
display: flex;
align-items: center;
justify-content: center;
text-align: center;
}
/* Hover state */
.stTabs [data-baseweb="tab"]:hover {
background: #FFE8A1;
transform: translateY(-2px);
}
/* Active tab */
.stTabs [aria-selected="true"] {
background: #654321;
color: #FFD700 !important;
border-color: #8B4513;
font-size: 1.05rem;
}
/* Icon sizing */
.stTabs [data-baseweb="tab"] svg {
width: 24px !important;
height: 24px !important;
margin-right: 8px !important;
}
/* Button styling */
.stButton>button {
background-color: #654321;
color: #FFD700 !important;
border-radius: 8px;
padding: 0.5rem 1rem;
transition: all 0.3s ease;
}
.stButton>button:hover {
background-color: #8B4513;
color: white;
}
/* Dataframe styling */
.table-container {
display: flex;
justify-content: center;
margin-top: 30px;
}
.table-inner {
width: 50%;
}
@media only screen and (max-width: 768px) {
.table-inner {
width: 90%; /* For mobile */
}
}
.stDataFrame {
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
background-color:white !important;
border: #CFB53B !important;
}
/* Section headers */
.st-emotion-cache-16txtl3 {
padding-top: 1rem;
}
/* Custom hr style */
.custom-divider {
border: 0;
height: 1px;
background: linear-gradient(90deg, transparent, #dee2e6, transparent);
margin: 2rem 0;
}
/* Consistent chart styling */
.stPlotlyChart {
border-radius: 10px;
background: white;
padding: 15px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
margin-bottom: 25px;
}
/* Match number inputs */
# .stNumberInput > div {
# padding: 0.25rem 0.5rem !important;
# }
#/* Better select widget alignment */
# .stSelectbox > div {
# margin-bottom: -15px;
# }
.custom-uploader > label div[data-testid="stFileUploadDropzone"] {
border: 2px solid #4CAF50;
background-color: #4CAF50;
color: white;
padding: 0.6em 1em;
border-radius: 0.5em;
text-align: center;
cursor: pointer;
}
.custom-uploader > label div[data-testid="stFileUploadDropzone"]:hover {
background-color: #45a049;
}
/* Color scale adjustments */
.plotly .colorbar {
padding: 10px !important;
color: #654321 !important;
}
</style>
""", unsafe_allow_html=True)
# ---------------------- App Header ----------------------
st.markdown("""
<div class="header">
<h1 style='text-align: center; margin-bottom: 0.5rem;'>π¦
Eagle Blend Optimizer</h1>
<h4 style='text-align: center; font-weight: 400; margin-top: 0;'>
AI-Powered Fuel Blend Property Prediction & Optimization
</h4>
</div>
""", unsafe_allow_html=True)
#------ universal variables
# ---------------------- Tabs ----------------------
tabs = st.tabs([
"π Dashboard",
"ποΈ Blend Designer",
"π€ Nothing For Now",
"βοΈ Optimization Engine",
"π Fuel Registry",
"π§ Model Insights"
])
# ---------------------- Dashboard Tab ----------------------
with tabs[0]:
st.subheader("Performance Metrics")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown("""
<div class="metric-card">
<div class="metric-label">Model Accuracy</div>
<div class="metric-value">94.7%</div>
<div class="metric-delta">RΒ² Score</div>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown("""
<div class="metric-card">
<div class="metric-label">Predictions Made</div>
<div class="metric-value">12,847</div>
<div class="metric-delta">Today</div>
</div>
""", unsafe_allow_html=True)
with col3:
st.markdown("""
<div class="metric-card">
<div class="metric-label">Optimizations</div>
<div class="metric-value">156</div>
<div class="metric-delta">This Week</div>
</div>
""", unsafe_allow_html=True)
with col4:
st.markdown("""
<div class="metric-card">
<div class="metric-label">Cost Savings</div>
<div class="metric-value">$2.4M</div>
<div class="metric-delta">Estimated Annual</div>
</div>
""", unsafe_allow_html=True)
st.markdown('<hr class="custom-divider">', unsafe_allow_html=True)
st.subheader("Current Blend Properties")
blend_props = {
"Property 1": 0.847,
"Property 2": 0.623,
"Property 3": 0.734,
"Property 4": 0.912,
"Property 5": 0.456,
"Property 6": -1.234,
}
# Enhanced dataframe display
df = pd.DataFrame(blend_props.items(), columns=["Property", "Value"])
# st.dataframe(
# df.style
# .background_gradient(cmap="YlOrBr", subset=["Value"])
# .format({"Value": "{:.3f}"}),
# use_container_width=True
# )
st.markdown('<div class="table-container"><div class="table-inner">', unsafe_allow_html=True)
st.dataframe(df, use_container_width=True)
st.markdown('</div></div>', unsafe_allow_html=True)
with tabs[1]:
col_header = st.columns([0.8, 0.2])
with col_header[0]:
st.subheader("ποΈ Blend Designer")
with col_header[1]:
batch_blend = st.checkbox("Batch Blend Mode", value=False,
help="Switch between manual input and predefined fuel selection",
key="batch_blend_mode")
# Initialize session state
if 'show_visualization' not in st.session_state:
st.session_state.show_visualization = False
if 'blended_value' not in st.session_state:
st.session_state.blended_value = None
if 'selected_property' not in st.session_state:
st.session_state.selected_property = "Property1"
# Batch mode file upload
if batch_blend:
st.subheader("π€ Batch Processing")
uploaded_file = st.file_uploader("Upload CSV File", type=["csv"], key="Batch_upload")
weights = [0.1, 0.2, 0.25, 0.15, 0.3] # Default weights for batch mode
if not uploaded_file:
st.warning("Please upload a CSV file for batch processing")
data_input = None
else:
try:
data_input = pd.read_csv(uploaded_file)
st.success("File uploaded successfully")
st.dataframe(data_input.head())
except Exception as e:
st.error(f"Error reading file: {str(e)}")
data_input = None
else:
# Regular mode
data_input = None
weights, props = [], []
col1, col2 = st.columns(2)
with col1:
st.markdown("##### βοΈ Component Weights")
for i in range(5):
weight = st.number_input(
f"Weight for Component {i+1}",
min_value=0.0,
max_value=1.0,
value=0.2,
step=0.01,
key=f"w_{i}"
)
weights.append(weight)
with col2:
st.markdown("##### Fuel Selection")
for i in range(5):
fuel = st.selectbox(
f"Component {i+1} Fuel Type",
options=list(st.session_state.FUEL_PROPERTIES.keys()),
key=f"fuel_{i}"
)
props.append(st.session_state.FUEL_PROPERTIES[fuel])
if st.button("βοΈ Predict Blended Property", key="predict_btn"):
if batch_blend:
if data_input is None:
st.error("β οΈ Please upload a valid CSV file first!")
st.session_state.show_visualization = False
else:
st.session_state.show_visualization = True
else:
if abs(sum(weights) - 1.0) > 0.01:
st.warning("β οΈ The total of weights must be **1.0**.")
st.session_state.show_visualization = False
else:
st.session_state.show_visualization = True
if st.session_state.show_visualization:
# Show calculation details
st.subheader("Blend Components Data")
if not batch_blend:
weights_data = {f"Component{i+1}_fraction": weights[i] for i in range(len(weights))}
props_data = {f"Component{i+1}_{j}": props[i][j] for j in props[i].keys() for i in range(len(props))}
combined = {**weights_data, **props_data}
data_input = pd.DataFrame([combined])
st.write("Properties:", data_input)
# Show visualization only if prediction was made
if st.session_state.show_visualization:
if not batch_blend:
st.markdown('<hr class="custom-divider">', unsafe_allow_html=True)
st.subheader("Blend Visualization")
components = [f"Component {i+1}" for i in range(5)]
# 1. Weight Distribution Pie Chart
col1, col2 = st.columns(2)
with col1:
fig1 = px.pie(
names=components,
values=weights,
title="Weight Distribution",
color_discrete_sequence=['#8B4513', '#CFB53B', '#654321'],
hole=0.4
)
fig1.update_layout(
margin=dict(t=50, b=10),
showlegend=False
)
fig1.update_traces(
textposition='inside',
textinfo='percent+label',
marker=dict(line=dict(color='#ffffff', width=1))
)
st.plotly_chart(fig1, use_container_width=True)
# 2. Property Comparison Bar Chart
with col2:
# Property selection for fuel mode
viz_property = st.selectbox(
"Select Property to View",
[f"Property{i+1}" for i in range(10)],
key="viz_property"
)
bar_values = [p[viz_property] for p in props]
blended_value = 123 #Modify
fig2 = px.bar(
x=components,
y=bar_values,
title=f"{viz_property} Values",
color=bar_values,
color_continuous_scale='YlOrBr'
)
fig2.update_layout(
yaxis_title=viz_property,
xaxis_title="Component",
margin=dict(t=50, b=10),
coloraxis_showscale=False
)
fig2.add_hline(
y=blended_value,
line_dash="dot",
line_color="#ff6600",
annotation_text="Blended Value",
annotation_position="top right"
)
st.plotly_chart(fig2, use_container_width=True)
# Display the calculated value prominently
st.markdown(f"""
<div style="
background-color: #FAF3E6;
border-left: 4px solid #8B4513;
border-radius: 4px;
padding: 12px;
margin: 12px 0;
">
<p style="margin: 0; color: #654321;
font-size: 2.2rem;
font-weight: 800;
color: #000;
text-align:center;">
Calculated <strong>{viz_property}</strong> =
<strong style="color: #000">{blended_value:.4f}</strong>
</p>
</div>
""", unsafe_allow_html=True)
else:
# Batch mode visualization placeholder
st.markdown('<hr class="custom-divider">', unsafe_allow_html=True)
st.subheader("Batch Processing Results")
st.dataframe(data_input, use_container_width=True)
# st.info("Batch processing complete. Add custom visualizations here.")
with tabs[2]:
st.subheader("π€ Nothing FOr NOw")
# uploaded_file = st.file_uploader("Upload CSV File", type=["csv"])
# if uploaded_file:
# df = pd.read_csv(uploaded_file)
# st.success("File uploaded successfully")
# st.dataframe(df.head())
# if st.button("βοΈ Run Batch Prediction"):
# result_df = df.copy()
# # result_df["Predicted_Property"] = df.apply(
# # lambda row: run_dummy_prediction(row.values[:5], row.values[5:10]), axis=1
# # )
# st.success("Batch prediction completed")
# st.dataframe(result_df.head())
# csv = result_df.to_csv(index=False).encode("utf-8")
# st.download_button("Download Results", csv, "prediction_results.csv", "text/csv")
with tabs[3]:
st.subheader("βοΈ Optimization Engine")
# Pareto frontier demo
st.markdown("#### Cost vs Performance Trade-off")
np.random.seed(42)
optimization_data = pd.DataFrame({
'Cost ($/ton)': np.random.uniform(100, 300, 50),
'Performance Score': np.random.uniform(70, 95, 50)
})
fig3 = px.scatter(
optimization_data,
x='Cost ($/ton)',
y='Performance Score',
title="Potential Blend Formulations",
color='Performance Score',
color_continuous_scale='YlOrBr'
)
# Add dummy pareto frontier
x_pareto = np.linspace(100, 300, 10)
y_pareto = 95 - 0.1*(x_pareto-100)
fig3.add_trace(px.line(
x=x_pareto,
y=y_pareto,
color_discrete_sequence= ['#8B4513', '#CFB53B', '#654321']
).data[0])
fig3.update_layout(
showlegend=False,
annotations=[
dict(
x=200,
y=88,
text="Pareto Frontier",
showarrow=True,
arrowhead=1,
ax=-50,
ay=-30
)
]
)
st.plotly_chart(fig3, use_container_width=True)
# Blend optimization history
st.markdown("#### Optimization Progress")
iterations = np.arange(20)
performance = np.concatenate([np.linspace(70, 85, 10), np.linspace(85, 89, 10)])
fig4 = px.line(
x=iterations,
y=performance,
title="Best Performance by Iteration",
markers=True
)
fig4.update_traces(
line_color='#1d3b58',
marker_color='#2c5282',
line_width=2.5
)
fig4.update_layout(
yaxis_title="Performance Score",
xaxis_title="Iteration"
)
st.plotly_chart(fig4, use_container_width=True)
with tabs[4]:
st.subheader("π Fuel Registry") # Changed to book emoji for registry
# Button to add new fuel
st.markdown("#### β Add a New Fuel Type")
with st.expander("Click to Add New Fuel", expanded=False):
with st.form("new_fuel_form", clear_on_submit=False):
fuel_name = st.text_input("Fuel Name", placeholder="e.g. Bioethanol")
cols = st.columns(5)
properties = {}
for i in range(10):
with cols[i % 5]:
prop_val = st.number_input(
f"Property {i+1}",
min_value=0.0,
step=0.1,
key=f"prop_{i}",
format="%.2f"
)
properties[f"Property{i+1}"] = round(prop_val, 2)
col1, col2 = st.columns(2)
with col1:
submitted = st.form_submit_button("πΎ Save Fuel", use_container_width=True)
with col2:
cancelled = st.form_submit_button("β Cancel", use_container_width=True)
if submitted:
if not fuel_name.strip():
st.warning("Fuel name cannot be empty.")
elif fuel_name in st.session_state.FUEL_PROPERTIES:
st.error(f"{fuel_name} already exists in registry.")
else:
# Update both session state and CSV
st.session_state.FUEL_PROPERTIES[fuel_name] = properties
save_fuel_data()
st.success(f"{fuel_name} successfully added!")
st.rerun() # Refresh to show new fuel
if cancelled:
st.rerun()
with st.expander("Batch Add New Fuel", expanded=False):
uploaded_file = st.file_uploader(
"π€ Upload Fuel Batch (CSV)",
type=['csv'],
accept_multiple_files=False,
key="fuel_uploader",
help="Upload a CSV file with the same format as the exported registry"
)
if uploaded_file is not None:
try:
new_fuels = pd.read_csv(uploaded_file, index_col=0).to_dict('index')
# Check for duplicates
duplicates = [name for name in new_fuels if name in st.session_state.FUEL_PROPERTIES]
if duplicates:
st.warning(f"These fuels already exist and won't be updated: {', '.join(duplicates)}")
# Only add new fuels
new_fuels = {name: props for name, props in new_fuels.items()
if name not in st.session_state.FUEL_PROPERTIES}
if new_fuels:
st.session_state.FUEL_PROPERTIES.update(new_fuels)
save_fuel_data()
st.success(f"Added {len(new_fuels)} new fuel(s) to registry!")
st.rerun()
else:
st.info("No new fuels to add from the uploaded file.")
except Exception as e:
st.error(f"Error processing file: {str(e)}")
st.error("Please ensure the file matches the expected format")
# Display current fuel properties
st.markdown("#### π Current Fuel Properties")
st.dataframe(
pd.DataFrame(st.session_state.FUEL_PROPERTIES).T.style
.background_gradient(cmap="YlOrBr", axis=None)
.format(precision=2),
use_container_width=True,
height=(len(st.session_state.FUEL_PROPERTIES) + 1) * 35 + 3,
hide_index=False
)
# File operations section
st.download_button(
label="π₯ Download Registry (CSV)",
data=pd.DataFrame(st.session_state.FUEL_PROPERTIES).T.to_csv().encode('utf-8'),
file_name='fuel_properties.csv',
mime='text/csv',
# use_container_width=True
)
with tabs[5]:
st.subheader("π§ Model Insights")
# Feature importance
st.markdown("#### Property Importance")
features = ['Property 1', 'Property 2', 'Property 3', 'Property 4', 'Property 5']
importance = np.array([0.35, 0.25, 0.2, 0.15, 0.05])
fig5 = px.bar(
x=importance,
y=features,
orientation='h',
title="Feature Importance for Blend Prediction",
color=importance,
color_continuous_scale='YlOrBr'
)
fig5.update_layout(
xaxis_title="Importance Score",
yaxis_title="Property",
coloraxis_showscale=False
)
st.plotly_chart(fig5, use_container_width=True)
# SHAP values demo
st.markdown("#### Property Impact Direction")
fig6 = px.scatter(
x=np.random.randn(100),
y=np.random.randn(100),
color=np.random.choice(features, 100),
title="SHAP Values (Simulated)",
labels={'x': 'Impact on Prediction', 'y': 'Property Value'}
)
fig6.update_traces(
marker=dict(size=10, opacity=0.7),
selector=dict(mode='markers')
)
fig6.add_vline(x=0, line_width=1, line_dash="dash")
st.plotly_chart(fig6, use_container_width=True)
# st.markdown("""
# <style>
# /* Consistent chart styling */
# .stPlotlyChart {
# border-radius: 10px;
# background: white;
# padding: 15px;
# box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
# margin-bottom: 25px;
# }
# /* Better select widget alignment */
# .stSelectbox > div {
# margin-bottom: -15px;
# }
# /* Color scale adjustments */
# .plotly .colorbar {
# padding: 10px !important;
# }
# </style>
# """, unsafe_allow_html=True) |