File size: 4,552 Bytes
22b2bcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Python In-built packages
from pathlib import Path
import PIL
import time

# External packages
import streamlit as st
import cv2

# Local Modules
import settings
import helper

# Setting page layout
st.set_page_config(
    page_title="Object Detection using YOLOv9",
    page_icon="🤖",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Main page heading
st.title("Object Detection using YOLOv9")

# Sidebar
st.sidebar.header("ML Model Config")

# Model Options
model_type = st.sidebar.radio(
    "Select Task", ['Detection', 'Segmentation'])
confidence = float(st.sidebar.slider(
    "Select Model Confidence", 25, 100, 40)) / 100

# Selecting Detection Or Segmentation
if model_type == 'Detection':
    model_path = Path(settings.DETECTION_MODEL)
elif model_type == 'Segmentation':
    model_path = Path(settings.SEGMENTATION_MODEL)

# Load Pre-trained ML Model
try:
    model = helper.load_model(model_path)
except Exception as ex:
    st.error(f"Unable to load model. Check the specified path: {model_path}")
    st.error(ex)

st.sidebar.header("Image/Video Config")
source_radio = st.sidebar.radio(
    "Select Source", settings.SOURCES_LIST)
source_img = None

# If image is selected
if source_radio == settings.IMAGE:
    source_img = st.sidebar.file_uploader(
        "Choose an image...", type=("jpg", "jpeg", "png", 'bmp', 'webp'))
    col1, col2 = st.columns(2)
    with col1:
        try:
            if source_img is None:
                default_image_path = str(settings.DEFAULT_IMAGE)
                default_image = PIL.Image.open(default_image_path)
                st.image(default_image_path, caption="Default Image",
                         use_column_width=True)
            else:
                uploaded_image = PIL.Image.open(source_img)
                st.image(source_img, caption="Uploaded Image",
                         use_column_width=True)
        except Exception as ex:
            st.error("Error occurred while opening the image.")
            st.error(ex)
    with col2:
        if source_img is None:
            default_detected_image_path = str(settings.DEFAULT_DETECT_IMAGE)
            default_detected_image = PIL.Image.open(
                default_detected_image_path)
            st.image(default_detected_image_path, caption='Detected Image',
                     use_column_width=True)
        else:
            if st.sidebar.button('Detect Objects'):
                res = model.predict(uploaded_image,
                                    conf=confidence
                                    )
                boxes = res[0].boxes
                res_plotted = res[0].plot()[:, :, ::-1]
                st.image(res_plotted, caption='Detected Image',
                         use_column_width=True)
                try:
                    with st.expander("Detection Results"):
                        for box in boxes:
                            st.write(box.data)
                except Exception as ex:
                    # st.write(ex)
                    st.write("No image is uploaded yet!")

elif source_radio == settings.VIDEO:
    helper.play_stored_video(confidence, model)

elif source_radio == settings.YOUTUBE:
    helper.play_youtube_video(confidence, model)

elif source_radio == settings.WEBCAM:  # Adding webcam option
    st.sidebar.markdown("**Webcam**")
    webcam = cv2.VideoCapture(1)
    if not webcam.isOpened():
        st.error("Unable to open webcam. Please make sure it's connected.")
    else:
        webcam_status = st.sidebar.empty()
        start_stop_button = st.sidebar.button("Start Webcam")

        if start_stop_button:
            webcam_started = True
            webcam_status.text("Webcam Started!")

            while webcam_started:
                ret, frame = webcam.read()
                if not ret:
                    st.error("Failed to capture frame from webcam")
                    break
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

                # Perform object detection on the frame
                res = model.predict(frame, conf=confidence)
                boxes = res[0].boxes
                frame = res[0].plot()[:, :, ::-1]

                # Display the frame
                st.image(frame, channels="RGB", use_column_width=True)

                stop_button = st.sidebar.button("Stop Webcam" + str(hash(time.time())))  # Unique key
                if stop_button:
                    webcam_started = False
                    webcam_status.text("Webcam Stopped!")

            webcam.release()