Spaces:
Sleeping
Sleeping
File size: 12,157 Bytes
9c4bf4f 26ff9be 9c4bf4f 26ff9be 1679dc5 9c4bf4f 26ff9be 9c4bf4f c39b385 dce3b4a ee11590 2d7efb5 9c4bf4f 32eb2e0 9c4bf4f 1bed993 4f90d46 1bed993 9c4bf4f 5f17314 9c4bf4f b0bb61b 9c4bf4f 2e8f960 b0bb61b 9c4bf4f b0bb61b 9c4bf4f 45e2ed5 f1aa1e4 a1b85a3 9c4bf4f a1b85a3 9c4bf4f 757d35f 26ff9be 1679dc5 8e89145 26ff9be a359a1a 26ff9be 1ce0f2e 3a636cb 26ff9be 3a636cb 26ff9be cf86894 53f3bc6 26ff9be 45e2ed5 26ff9be 45e2ed5 26ff9be 5808bd1 45e2ed5 bf2199e 26ff9be 8e89145 cf86894 8e89145 3a636cb d86b643 3a636cb 45e2ed5 7758f6a 45e2ed5 2e73d41 4835adc 3bcf5c9 c358865 3bcf5c9 c358865 3bcf5c9 c358865 2e73d41 45e2ed5 bf2199e a359a1a 9c4bf4f 7758f6a 26ff9be 45e2ed5 26ff9be 9ce4592 45e2ed5 26ff9be 7be5ca9 45e2ed5 3a636cb 26ff9be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import gradio as gr
import os
from transformers import AutoTokenizer,VitsModel
import google.generativeai as genai
import torch
import torchaudio
api_key =os.environ.get("id_gmkey")
token=os.environ.get("key_")
genai.configure(api_key=api_key)
tokenizer = AutoTokenizer.from_pretrained("wasmdashai/vits-ar-sa-huba",token=token)
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_vits=VitsModel.from_pretrained("wasmdashai/vits-ar-sa-huba-v2",token=token)#.to(device)
model_vits.decoder.apply_weight_norm()
# torch.nn.utils.weight_norm(self.decoder.conv_pre)
# torch.nn.utils.weight_norm(self.decoder.conv_post)
for flow in model_vits.flow.flows:
torch.nn.utils.weight_norm(flow.conv_pre)
torch.nn.utils.weight_norm(flow.conv_post)
generation_config = {
"temperature": 1,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": 1024,
"response_mime_type": "text/plain",
}
import requests
API_URL = "https://api-inference.huggingface.co/models/wasmdashai/vits-ar-sa-huba-v2"
headers = {"Authorization": f"Bearer {token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
model = genai.GenerativeModel(
model_name="gemini-1.5-pro",
generation_config=generation_config,
# safety_settings = Adjust safety settings
# See https://ai.google.dev/gemini-api/docs/safety-settings
)
import torch
from typing import Any, Callable, Optional, Tuple, Union,Iterator
import numpy as np
import torch.nn as nn # Import the missing module
def _inference_forward_stream(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_embeddings: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
padding_mask: Optional[torch.Tensor] = None,
chunk_size: int = 32, # Chunk size for streaming output
) -> Iterator[torch.Tensor]:
"""Generates speech waveforms in a streaming fashion."""
if attention_mask is not None:
padding_mask = attention_mask.unsqueeze(-1).float()
else:
padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states,
input_padding_mask,
speaker_embeddings,
reverse=True,
noise_scale=self.noise_scale_duration,
)
else:
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
length_scale = 1.0 / self.speaking_rate
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
batch_size, _, output_length, input_length = attn_mask.shape
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
valid_indices = indices.unsqueeze(0) < cum_duration
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
# Expand prior distribution
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
spectrogram = latents * output_padding_mask
for i in range(0, spectrogram.size(-1), chunk_size):
with torch.no_grad():
wav=self.decoder(spectrogram[:,:,i : i + chunk_size] ,speaker_embeddings)
yield wav.squeeze().cpu().numpy()
def create_chat_session():
chat_session = model.start_chat(
history=[
{
"role": "user",
"parts": [
"السلام عليكم اريد منك ان ترد على اسئلتي دائما باللهجة السعودية النجدية \n\n",
],
},
{
"role": "model",
"parts": [
"هلا والله، إسأل ما في خاطرك وأنا حاضر أساعدك، بس بشرط واحد، أسئلتك تكون واضحة عشان أفهم عليك عدل وأعطيك الجواب الزين. قل وش تبي وأنا حاضر! \n",
],
},
{
"role": "user",
"parts": [
"كيف حالك اخبارك\n",
],
},
{
"role": "model",
"parts": [
"هلا والله وغلا، أنا طيب وبخير الحمد لله، انت كيفك؟ عساك طيب؟ \n \n وش عندك أخبار؟ عسى كلها زينة. \n",
],
},
{
"role": "user",
"parts": [
"اريد ايضا ان تكون اجابتك مختصره على سبيل المثال ااكثر اجابة سطرين\n",
],
},
{
"role": "model",
"parts": [
"خلاص، فهمتك. من عيوني، أسئلتك من اليوم وطالع أجوبتها ما تتعدى سطرين. \n \n إسأل وشف! \n",
],
},
]
)
return chat_session
# AI=create_chat_session()
def generate_audio(text,speaker_id=None):
inputs = tokenizer(text, return_tensors="pt")#.input_ids
speaker_embeddings = None
#torch.cuda.empty_cache()
with torch.no_grad():
for chunk in _inference_forward_stream(model_vits,input_ids=inputs.input_ids,attention_mask=inputs.attention_mask,speaker_embeddings= speaker_embeddings,chunk_size=256):
yield 16000,chunk#.squeeze().cpu().numpy()#.astype(np.int16).tobytes()
def get_answer_ai(text,session_ai):
#if session_ai is None:
session_ai=create_chat_session()
try:
response = session_ai.send_message(text,stream=True)
return response,session_ai
except :
session_ai=create_chat_session()
response = session_ai.send_message(text,stream=True)
return response,session_ai
def modelspeech(text):
audio_bytes = query({"inputs":text })
wav, sr = torchaudio.load(audio_bytes)
yield sr,wav.squeeze().cpu().numpy()
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")#.cuda()
wav = model_vits(input_ids=inputs["input_ids"]).waveform.cpu().numpy().reshape(-1)
# display(Audio(wav, rate=model.config.sampling_rate))
return model_vits.config.sampling_rate,wav#remove_noise_nr(wav)
def modelspeechstr(text):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")#.cuda()
wav = model_vits(input_ids=inputs["input_ids"]).waveform.cpu().numpy().reshape(-1)
# display(Audio(wav, rate=model.config.sampling_rate))
return np.array2string(wav)
import re
def clean_text(text):
# Remove symbols and extra spaces
cleaned_text = re.sub(r'[^\w\s]', ' ', text) # Remove symbols
cleaned_text = re.sub(r'\s+', ' ', cleaned_text) # Normalize spaces
return cleaned_text.strip() # Remove leading/trailing spaces
def text_to_speech(text,session_ai):
response = dash(text,session_ai,False)
pad_text=''
k=0
for chunk in response:
chunk,session_ai=chunk
pad_text+=str(clean_text(chunk))
if pad_text!='' and len(pad_text)>10:
out=pad_text
pad_text=''
k+=1
# yield modelspeech(out),session_ai
for outmodel in modelspeech(out):
yield outmodel,session_ai
if pad_text!='':
for outmodel in modelspeech(pad_text):
yield outmodel,session_ai
# for stream_wav in generate_audio(pad_text):
# yield stream_wav
def text_to_speechstr(text,session_ai):
response = dash(text,session_ai,False)
pad_text=''
k=0
for chunk in response:
chunk,session_ai=chunk
pad_text+=str(clean_text(chunk))
if pad_text!='' and len(pad_text)>10:
out=pad_text
pad_text=''
k+=1
yield modelspeechstr(out),session_ai
# for stream_wav in generate_audio(out):
# yield stream_wav
if pad_text!='':
yield modelspeechstr(pad_text),session_ai
def dash(text,session_ai,is_state=True):
response,session_ai=get_answer_ai(text,session_ai)
txt=' '
for chunk in response:
if chunk is not None:
if is_state:
txt+=chunk.text
else:
txt=chunk.text
yield txt,session_ai
# demo = gr.Interface(fn=dash, inputs=["text"], outputs=['text'])
# demo.launch()
with gr.Blocks() as demo:
session_ai=gr.State()
with gr.Tab("AI Text "):
gr.Markdown("# Text to Speech")
text_input = gr.Textbox(label="Enter Text")
text_out = gr.Textbox()
text_input.submit(dash, [text_input,session_ai],[text_out,session_ai])
with gr.Tab("AI Speech"):
gr.Markdown("# Text to Speech")
text_input2 = gr.Textbox(label="Enter Text")
audio_output = gr.Audio(streaming=True,autoplay=True)
text_input2.submit(text_to_speech, [text_input2,session_ai], [audio_output,session_ai])
with gr.Tab("AI Speechstr"):
gr.Markdown("# Text to Speech")
text_input3 = gr.Textbox(label="Enter Text")
text_input4 = gr.Textbox(label="out Text")
text_input3.submit(text_to_speechstr, [text_input3,session_ai], [text_input4,session_ai])
demo.launch(show_error=True)
|