Spaces:
Running
Running
File size: 34,524 Bytes
d95123f 1b98339 36d0e0c d95123f 18943dc d95123f 18943dc d95123f 18943dc d95123f 18943dc d95123f 18943dc d95123f 18943dc d95123f 18943dc d95123f 7ae2008 d95123f 36d0e0c 5663101 36d0e0c d95123f e51689f d95123f 9f08e7c 5827a92 e51689f dc6c64e c035899 d038576 8902d03 917c85e 5827a92 d95123f 5663101 d0bbce1 7ae2008 d95123f 36d0e0c d95123f 36d0e0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
import numpy as np
import os
import re
import datetime
import arxiv
import openai, tenacity
import base64, requests
import argparse
import configparser
import fitz, io, os
from PIL import Image
import gradio
import markdown
def parse_text(text):
lines = text.split("\n")
for i,line in enumerate(lines):
if "```" in line:
items = line.split('`')
if items[-1]:
lines[i] = f'<pre><code class="{items[-1]}">'
else:
lines[i] = f'</code></pre>'
else:
if i>0:
line = line.replace("<", "<")
line = line.replace(">", ">")
lines[i] = '<br/>'+line.replace(" ", " ")
return "".join(lines)
def get_response(system, context, myKey, raw = False):
openai.api_key = myKey
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[system, *context],
)
openai.api_key = ""
if raw:
return response
else:
message = response["choices"][0]["message"]["content"]
message_with_stats = f'{message}'
return message, parse_text(message_with_stats)
def valid_apikey(api_key):
try:
get_response({"role": "system", "content": "You are a helpful assistant."}, [{"role": "user", "content": "test"}], api_key)
return "可用的api-key"
except:
return "无效的api-key"
class Paper:
def __init__(self, path, title='', url='', abs='', authers=[], sl=[]):
# 初始化函数,根据pdf路径初始化Paper对象
self.url = url # 文章链接
self.path = path # pdf路径
self.sl = sl
self.section_names = [] # 段落标题
self.section_texts = {} # 段落内容
if title == '':
self.pdf = fitz.open(self.path) # pdf文档
self.title = self.get_title()
self.parse_pdf()
else:
self.title = title
self.authers = authers
self.abs = abs
self.roman_num = ["I", "II", 'III', "IV", "V", "VI", "VII", "VIII", "IIX", "IX", "X"]
self.digit_num = [str(d+1) for d in range(10)]
self.first_image = ''
def parse_pdf(self):
self.pdf = fitz.open(self.path) # pdf文档
self.text_list = [page.get_text() for page in self.pdf]
self.all_text = ' '.join(self.text_list)
self.section_page_dict = self._get_all_page_index() # 段落与页码的对应字典
print("section_page_dict", self.section_page_dict)
self.section_text_dict = self._get_all_page() # 段落与内容的对应字典
self.section_text_dict.update({"title": self.title})
self.pdf.close()
def get_image_path(self, image_path=''):
"""
将PDF中的第一张图保存到image.png里面,存到本地目录,返回文件名称,供gitee读取
:param filename: 图片所在路径,"C:\\Users\\Administrator\\Desktop\\nwd.pdf"
:param image_path: 图片提取后的保存路径
:return:
"""
# open file
max_size = 0
image_list = []
with fitz.Document(self.path) as my_pdf_file:
# 遍历所有页面
for page_number in range(1, len(my_pdf_file) + 1):
# 查看独立页面
page = my_pdf_file[page_number - 1]
# 查看当前页所有图片
images = page.get_images()
# 遍历当前页面所有图片
for image_number, image in enumerate(page.get_images(), start=1):
# 访问图片xref
xref_value = image[0]
# 提取图片信息
base_image = my_pdf_file.extract_image(xref_value)
# 访问图片
image_bytes = base_image["image"]
# 获取图片扩展名
ext = base_image["ext"]
# 加载图片
image = Image.open(io.BytesIO(image_bytes))
image_size = image.size[0] * image.size[1]
if image_size > max_size:
max_size = image_size
image_list.append(image)
for image in image_list:
image_size = image.size[0] * image.size[1]
if image_size == max_size:
image_name = f"image.{ext}"
im_path = os.path.join(image_path, image_name)
print("im_path:", im_path)
max_pix = 480
origin_min_pix = min(image.size[0], image.size[1])
if image.size[0] > image.size[1]:
min_pix = int(image.size[1] * (max_pix/image.size[0]))
newsize = (max_pix, min_pix)
else:
min_pix = int(image.size[0] * (max_pix/image.size[1]))
newsize = (min_pix, max_pix)
image = image.resize(newsize)
image.save(open(im_path, "wb"))
return im_path, ext
return None, None
# 定义一个函数,根据字体的大小,识别每个章节名称,并返回一个列表
def get_chapter_names(self,):
# # 打开一个pdf文件
doc = fitz.open(self.path) # pdf文档
text_list = [page.get_text() for page in doc]
all_text = ''
for text in text_list:
all_text += text
# # 创建一个空列表,用于存储章节名称
chapter_names = []
for line in all_text.split('\n'):
line_list = line.split(' ')
if '.' in line:
point_split_list = line.split('.')
space_split_list = line.split(' ')
if 1 < len(space_split_list) < 5:
if 1 < len(point_split_list) < 5 and (point_split_list[0] in self.roman_num or point_split_list[0] in self.digit_num):
print("line:", line)
chapter_names.append(line)
return chapter_names
def get_title(self):
doc = self.pdf # 打开pdf文件
max_font_size = 0 # 初始化最大字体大小为0
max_string = "" # 初始化最大字体大小对应的字符串为空
max_font_sizes = [0]
for page in doc: # 遍历每一页
text = page.get_text("dict") # 获取页面上的文本信息
blocks = text["blocks"] # 获取文本块列表
for block in blocks: # 遍历每个文本块
if block["type"] == 0: # 如果是文字类型
font_size = block["lines"][0]["spans"][0]["size"] # 获取第一行第一段文字的字体大小
max_font_sizes.append(font_size)
if font_size > max_font_size: # 如果字体大小大于当前最大值
max_font_size = font_size # 更新最大值
max_string = block["lines"][0]["spans"][0]["text"] # 更新最大值对应的字符串
max_font_sizes.sort()
print("max_font_sizes", max_font_sizes[-10:])
cur_title = ''
for page in doc: # 遍历每一页
text = page.get_text("dict") # 获取页面上的文本信息
blocks = text["blocks"] # 获取文本块列表
for block in blocks: # 遍历每个文本块
if block["type"] == 0: # 如果是文字类型
cur_string = block["lines"][0]["spans"][0]["text"] # 更新最大值对应的字符串
font_flags = block["lines"][0]["spans"][0]["flags"] # 获取第一行第一段文字的字体特征
font_size = block["lines"][0]["spans"][0]["size"] # 获取第一行第一段文字的字体大小
# print(font_size)
if abs(font_size - max_font_sizes[-1]) < 0.3 or abs(font_size - max_font_sizes[-2]) < 0.3:
# print("The string is bold.", max_string, "font_size:", font_size, "font_flags:", font_flags)
if len(cur_string) > 4 and "arXiv" not in cur_string:
# print("The string is bold.", max_string, "font_size:", font_size, "font_flags:", font_flags)
if cur_title == '' :
cur_title += cur_string
else:
cur_title += ' ' + cur_string
# break
title = cur_title.replace('\n', ' ')
return title
def _get_all_page_index(self):
# 定义需要寻找的章节名称列表
section_list = self.sl
# 初始化一个字典来存储找到的章节和它们在文档中出现的页码
section_page_dict = {}
# 遍历每一页文档
for page_index, page in enumerate(self.pdf):
# 获取当前页面的文本内容
cur_text = page.get_text()
# 遍历需要寻找的章节名称列表
for section_name in section_list:
# 将章节名称转换成大写形式
section_name_upper = section_name.upper()
# 如果当前页面包含"Abstract"这个关键词
if "Abstract" == section_name and section_name in cur_text:
# 将"Abstract"和它所在的页码加入字典中
section_page_dict[section_name] = page_index
# 如果当前页面包含章节名称,则将章节名称和它所在的页码加入字典中
else:
if section_name + '\n' in cur_text:
section_page_dict[section_name] = page_index
elif section_name_upper + '\n' in cur_text:
section_page_dict[section_name] = page_index
# 返回所有找到的章节名称及它们在文档中出现的页码
return section_page_dict
def _get_all_page(self):
"""
获取PDF文件中每个页面的文本信息,并将文本信息按照章节组织成字典返回。
Returns:
section_dict (dict): 每个章节的文本信息字典,key为章节名,value为章节文本。
"""
text = ''
text_list = []
section_dict = {}
# # 先处理Abstract章节
# for page_index, page in enumerate(self.pdf):
# cur_text = page.get_text()
# # 如果该页面是Abstract章节所在页面
# if page_index == list(self.section_page_dict.values())[0]:
# abs_str = "Abstract"
# # 获取Abstract章节的起始位置
# first_index = cur_text.find(abs_str)
# # 查找下一个章节的关键词,这里是Introduction
# intro_str = "Introduction"
# if intro_str in cur_text:
# second_index = cur_text.find(intro_str)
# elif intro_str.upper() in cur_text:
# second_index = cur_text.find(intro_str.upper())
# # 将Abstract章节内容加入字典中
# section_dict[abs_str] = cur_text[first_index+len(abs_str)+1:second_index].replace('-\n',
# '').replace('\n', ' ').split('I.')[0].split("II.")[0]
# 再处理其他章节:
text_list = [page.get_text() for page in self.pdf]
for sec_index, sec_name in enumerate(self.section_page_dict):
print(sec_index, sec_name, self.section_page_dict[sec_name])
if sec_index <= 0:
continue
else:
# 直接考虑后面的内容:
start_page = self.section_page_dict[sec_name]
if sec_index < len(list(self.section_page_dict.keys()))-1:
end_page = self.section_page_dict[list(self.section_page_dict.keys())[sec_index+1]]
else:
end_page = len(text_list)
print("start_page, end_page:", start_page, end_page)
cur_sec_text = ''
if end_page - start_page == 0:
if sec_index < len(list(self.section_page_dict.keys()))-1:
next_sec = list(self.section_page_dict.keys())[sec_index+1]
if text_list[start_page].find(sec_name) == -1:
start_i = text_list[start_page].find(sec_name.upper())
else:
start_i = text_list[start_page].find(sec_name)
if text_list[start_page].find(next_sec) == -1:
end_i = text_list[start_page].find(next_sec.upper())
else:
end_i = text_list[start_page].find(next_sec)
cur_sec_text += text_list[start_page][start_i:end_i]
else:
for page_i in range(start_page, end_page):
# print("page_i:", page_i)
if page_i == start_page:
if text_list[start_page].find(sec_name) == -1:
start_i = text_list[start_page].find(sec_name.upper())
else:
start_i = text_list[start_page].find(sec_name)
cur_sec_text += text_list[page_i][start_i:]
elif page_i < end_page:
cur_sec_text += text_list[page_i]
elif page_i == end_page:
if sec_index < len(list(self.section_page_dict.keys()))-1:
next_sec = list(self.section_page_dict.keys())[sec_index+1]
if text_list[start_page].find(next_sec) == -1:
end_i = text_list[start_page].find(next_sec.upper())
else:
end_i = text_list[start_page].find(next_sec)
cur_sec_text += text_list[page_i][:end_i]
section_dict[sec_name] = cur_sec_text.replace('-\n', '').replace('\n', ' ')
return section_dict
# 定义Reader类
class Reader:
# 初始化方法,设置属性
def __init__(self, key_word='', query='', filter_keys='',
root_path='./',
gitee_key='',
sort=arxiv.SortCriterion.SubmittedDate, user_name='defualt', language='cn', key=''):
self.key = str(key) # OpenAI key
self.user_name = user_name # 读者姓名
self.key_word = key_word # 读者感兴趣的关键词
self.query = query # 读者输入的搜索查询
self.sort = sort # 读者选择的排序方式
self.language = language # 读者选择的语言
self.filter_keys = filter_keys # 用于在摘要中筛选的关键词
self.root_path = root_path
self.file_format = 'md' # or 'txt',如果为图片,则必须为'md'
self.save_image = False
if self.save_image:
self.gitee_key = self.config.get('Gitee', 'api')
else:
self.gitee_key = ''
def get_arxiv(self, max_results=30):
search = arxiv.Search(query=self.query,
max_results=max_results,
sort_by=self.sort,
sort_order=arxiv.SortOrder.Descending,
)
return search
def filter_arxiv(self, max_results=30):
search = self.get_arxiv(max_results=max_results)
print("all search:")
for index, result in enumerate(search.results()):
print(index, result.title, result.updated)
filter_results = []
filter_keys = self.filter_keys
print("filter_keys:", self.filter_keys)
# 确保每个关键词都能在摘要中找到,才算是目标论文
for index, result in enumerate(search.results()):
abs_text = result.summary.replace('-\n', '-').replace('\n', ' ')
meet_num = 0
for f_key in filter_keys.split(" "):
if f_key.lower() in abs_text.lower():
meet_num += 1
if meet_num == len(filter_keys.split(" ")):
filter_results.append(result)
# break
print("filter_results:", len(filter_results))
print("filter_papers:")
for index, result in enumerate(filter_results):
print(index, result.title, result.updated)
return filter_results
def validateTitle(self, title):
# 将论文的乱七八糟的路径格式修正
rstr = r"[\/\\\:\*\?\"\<\>\|]" # '/ \ : * ? " < > |'
new_title = re.sub(rstr, "_", title) # 替换为下划线
return new_title
def download_pdf(self, filter_results):
# 先创建文件夹
date_str = str(datetime.datetime.now())[:13].replace(' ', '-')
key_word = str(self.key_word.replace(':', ' '))
path = self.root_path + 'pdf_files/' + self.query.replace('au: ', '').replace('title: ', '').replace('ti: ', '').replace(':', ' ')[:25] + '-' + date_str
try:
os.makedirs(path)
except:
pass
print("All_paper:", len(filter_results))
# 开始下载:
paper_list = []
for r_index, result in enumerate(filter_results):
try:
title_str = self.validateTitle(result.title)
pdf_name = title_str+'.pdf'
# result.download_pdf(path, filename=pdf_name)
self.try_download_pdf(result, path, pdf_name)
paper_path = os.path.join(path, pdf_name)
print("paper_path:", paper_path)
paper = Paper(path=paper_path,
url=result.entry_id,
title=result.title,
abs=result.summary.replace('-\n', '-').replace('\n', ' '),
authers=[str(aut) for aut in result.authors],
)
# 下载完毕,开始解析:
paper.parse_pdf()
paper_list.append(paper)
except Exception as e:
print("download_error:", e)
pass
return paper_list
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def try_download_pdf(self, result, path, pdf_name):
result.download_pdf(path, filename=pdf_name)
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def upload_gitee(self, image_path, image_name='', ext='png'):
"""
上传到码云
:return:
"""
with open(image_path, 'rb') as f:
base64_data = base64.b64encode(f.read())
base64_content = base64_data.decode()
date_str = str(datetime.datetime.now())[:19].replace(':', '-').replace(' ', '-') + '.' + ext
path = image_name+ '-' +date_str
payload = {
"access_token": self.gitee_key,
"owner": self.config.get('Gitee', 'owner'),
"repo": self.config.get('Gitee', 'repo'),
"path": self.config.get('Gitee', 'path'),
"content": base64_content,
"message": "upload image"
}
# 这里需要修改成你的gitee的账户和仓库名,以及文件夹的名字:
url = f'https://gitee.com/api/v5/repos/'+self.config.get('Gitee', 'owner')+'/'+self.config.get('Gitee', 'repo')+'/contents/'+self.config.get('Gitee', 'path')+'/'+path
rep = requests.post(url, json=payload).json()
print("rep:", rep)
if 'content' in rep.keys():
image_url = rep['content']['download_url']
else:
image_url = r"https://gitee.com/api/v5/repos/"+self.config.get('Gitee', 'owner')+'/'+self.config.get('Gitee', 'repo')+'/contents/'+self.config.get('Gitee', 'path')+'/' + path
return image_url
def summary_with_chat(self, paper_list, key):
htmls = []
for paper_index, paper in enumerate(paper_list):
# 第一步先用title,abs,和introduction进行总结。
text = ''
text += 'Title:' + paper.title
text += 'Url:' + paper.url
text += 'Abstrat:' + paper.abs
# intro
text += list(paper.section_text_dict.values())[0]
max_token = 2500 * 4
text = text[:max_token]
chat_summary_text = self.chat_summary(text=text, key=str(key))
htmls.append(chat_summary_text)
# TODO 往md文档中插入论文里的像素最大的一张图片,这个方案可以弄的更加智能一些:
first_image, ext = paper.get_image_path()
if first_image is None or self.gitee_key == '':
pass
else:
image_title = self.validateTitle(paper.title)
image_url = self.upload_gitee(image_path=first_image, image_name=image_title, ext=ext)
htmls.append("\n")
htmls.append("![Fig]("+image_url+")")
htmls.append("\n")
# 第二步总结方法:
# TODO,由于有些文章的方法章节名是算法名,所以简单的通过关键词来筛选,很难获取,后面需要用其他的方案去优化。
method_key = ''
for parse_key in paper.section_text_dict.keys():
if 'method' in parse_key.lower() or 'approach' in parse_key.lower():
method_key = parse_key
break
if method_key != '':
text = ''
method_text = ''
summary_text = ''
summary_text += "<summary>" + chat_summary_text
# methods
method_text += paper.section_text_dict[method_key]
# TODO 把这个变成tenacity的自动判别!
max_token = 2500 * 4
text = summary_text + "\n <Methods>:\n" + method_text
text = text[:max_token]
chat_method_text = self.chat_method(text=text, key=str(key))
htmls.append(chat_method_text)
else:
chat_method_text = ''
htmls.append("\n")
# 第三步总结全文,并打分:
conclusion_key = ''
for parse_key in paper.section_text_dict.keys():
if 'conclu' in parse_key.lower():
conclusion_key = parse_key
break
text = ''
conclusion_text = ''
summary_text = ''
summary_text += "<summary>" + chat_summary_text + "\n <Method summary>:\n" + chat_method_text
if conclusion_key != '':
# conclusion
conclusion_text += paper.section_text_dict[conclusion_key]
max_token = 2500 * 4
text = summary_text + "\n <Conclusion>:\n" + conclusion_text
else:
text = summary_text
text = text[:max_token]
chat_conclusion_text = self.chat_conclusion(text=text, key=str(key))
htmls.append(chat_conclusion_text)
htmls.append("\n")
md_text = "\n".join(htmls)
return markdown.markdown(md_text)
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def chat_conclusion(self, text, key):
openai.api_key = key
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
# prompt需要用英语替换,少占用token。
messages=[
{"role": "system", "content": "你是一个["+self.key_word+"]领域的审稿人,你需要严格评审这篇文章"}, # chatgpt 角色
{"role": "assistant", "content": "这是一篇英文文献的<summary>和<conclusion>部分内容,其中<summary>你已经总结好了,但是<conclusion>部分,我需要你帮忙归纳下面问题:"+text}, # 背景知识,可以参考OpenReview的审稿流程
{"role": "user", "content": """
8. 做出如下总结:
- (1):这篇工作的意义如何?
- (2):从创新点、性能、工作量这三个维度,总结这篇文章的优点和缺点。
.......
按照后面的格式输出:
8. Conclusion:
- (1):xxx;
- (2):创新点: xxx; 性能: xxx; 工作量: xxx;
务必使用中文回答(专有名词需要用英文标注),语句尽量简洁且学术,不要和之前的<summary>内容重复,数值使用原文数字, 务必严格按照格式,将对应内容输出到xxx中,.......代表按照实际需求填写,如果没有可以不用写.
"""},
]
)
result = ''
for choice in response.choices:
result += choice.message.content
print("conclusion_result:\n", result)
return result
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def chat_method(self, text, key):
openai.api_key = key
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "你是一个["+self.key_word+"]领域的科研人员,善于使用精炼的语句总结论文"}, # chatgpt 角色
{"role": "assistant", "content": "这是一篇英文文献的<summary>和<Method>部分内容,其中<summary>你已经总结好了,但是<Methods>部分,我需要你帮忙阅读并归纳下面问题:"+text}, # 背景知识
{"role": "user", "content": """
7. 详细描述这篇文章的方法思路。比如说它的步骤是:
- (1):...
- (2):...
- (3):...
- .......
按照后面的格式输出:
7. Methods:
- (1):xxx;
- (2):xxx;
- (3):xxx;
.......
务必使用中文回答(专有名词需要用英文标注),语句尽量简洁且学术,不要和之前的<summary>内容重复,数值使用原文数字, 务必严格按照格式,将对应内容输出到xxx中,按照\n换行,.......代表按照实际需求填写,如果没有可以不用写.
"""},
]
)
result = ''
for choice in response.choices:
result += choice.message.content
print("method_result:\n", result)
return result
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def chat_summary(self, text, key):
openai.api_key = key
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "你是一个["+self.key_word+"]领域的科研人员,善于使用精炼的语句总结论文"}, # chatgpt 角色
{"role": "assistant", "content": "这是一篇英文文献的标题,作者,链接,Abstract和Introduction部分内容,我需要你帮忙阅读并归纳下面问题:"+text}, # 背景知识
{"role": "user", "content": """
1. 标记出这篇文献的标题(加上中文翻译)
2. 列举所有的作者姓名 (使用英文)
3. 标记第一作者的单位(只输出中文翻译)
4. 标记出这篇文章的关键词(使用英文)
5. 论文链接,Github代码链接(如果有的话,没有的话请填写Github:None)
6. 按照下面四个点进行总结:
- (1):这篇文章的研究背景是什么?
- (2):过去的方法有哪些?它们存在什么问题?本文和过去的研究有哪些本质的区别?Is the approach well motivated?
- (3):本文提出的研究方法是什么?
- (4):本文方法在什么任务上,取得了什么性能?性能能否支持他们的目标?
按照后面的格式输出:
1. Title: xxx
2. Authors: xxx
3. Affiliation: xxx
4. Keywords: xxx
5. Urls: xxx or xxx , xxx
6. Summary:
- (1):xxx;
- (2):xxx;
- (3):xxx;
- (4):xxx.
务必使用中文回答(专有名词需要用英文标注),语句尽量简洁且学术,不要有太多重复的信息,数值使用原文数字, 务必严格按照格式,将对应内容输出到xxx中,按照\n换行.
"""},
]
)
result = ''
for choice in response.choices:
result += choice.message.content
print("summary_result:\n", result)
return result
def export_to_markdown(self, text, file_name, mode='w'):
# 使用markdown模块的convert方法,将文本转换为html格式
# html = markdown.markdown(text)
# 打开一个文件,以写入模式
with open(file_name, mode, encoding="utf-8") as f:
# 将html格式的内容写入文件
f.write(text)
# 定义一个方法,打印出读者信息
def show_info(self):
print(f"Key word: {self.key_word}")
print(f"Query: {self.query}")
print(f"Sort: {self.sort}")
def upload_pdf(key, text, file):
# 检查两个输入都不为空
if not key or not text or not file:
return "两个输入都不能为空,请输入字符并上传 PDF 文件!"
# 判断PDF文件
#if file and file.name.split(".")[-1].lower() != "pdf":
# return '请勿上传非 PDF 文件!'
else:
section_list = text.split(',')
paper_list = [Paper(path=file, sl=section_list)]
# 创建一个Reader对象
reader = Reader()
sum_info = reader.summary_with_chat(paper_list=paper_list, key=key)
return sum_info
api_title = "api-key可用验证"
api_description = '''<div align='left'>
<img src='https://visitor-badge.laobi.icu/badge?page_id=https://huggingface.co/spaces/wangrongsheng/ChatPaper'>
<img align='right' src='https://i.328888.xyz/2023/03/12/vH9dU.png' width="150">
Use ChatGPT to summary the papers.Star our Github [🌟ChatPaper](https://github.com/kaixindelele/ChatPaper) .
💗如果您觉得我们的项目对您有帮助,还请您给我们一些鼓励!💗
🔴请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
</div>
'''
api_input = [
gradio.inputs.Textbox(label="请输入你的api-key(必填)", default="", type='password')
]
api_gui = gradio.Interface(fn=valid_apikey, inputs=api_input, outputs="text", title=api_title, description=api_description)
# 标题
title = "ChatPaper"
# 描述
description = '''<div align='left'>
<img src='https://visitor-badge.laobi.icu/badge?page_id=https://huggingface.co/spaces/wangrongsheng/ChatPaper'>
<img align='right' src='https://i.328888.xyz/2023/03/12/vH9dU.png' width="200">
Use ChatGPT to summary the papers.Star our Github [🌟ChatPaper](https://github.com/kaixindelele/ChatPaper) .
💗如果您觉得我们的项目对您有帮助,还请您给我们一些鼓励!💗
🔴请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛!
</div>
'''
# 创建Gradio界面
ip = [
gradio.inputs.Textbox(label="请输入你的API-key(必填)", default="", type='password'),
gradio.inputs.Textbox(label="请输入论文大标题索引(用英文逗号隔开,必填)", default="'Abstract,Introduction,Related Work,Background,Preliminary,Problem Formulation,Methods,Methodology,Method,Approach,Approaches,Materials and Methods,Experiment Settings,Experiment,Experimental Results,Evaluation,Experiments,Results,Findings,Data Analysis,Discussion,Results and Discussion,Conclusion,References'"),
gradio.inputs.File(label="请上传论文PDF(必填)", file_types=['.pdf'])
]
chatpaper_gui = gradio.Interface(fn=upload_pdf, inputs=ip, outputs="html", title=title, description=description)
# Start server
gui = gradio.TabbedInterface(interface_list=[api_gui, chatpaper_gui], tab_names=["API-key", "ChatPaper"])
gui.launch(quiet=True,show_api=False) |