Spaces:
Runtime error
Runtime error
File size: 3,133 Bytes
456be22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import openai
import tiktoken
class Conversation:
def __init__(self, prompt, model="gpt-3.5-turbo", temperature=0.8, max_tokens=250):
self.prompt = prompt
self.model = model
self.temperature = temperature
self.max_tokens = max_tokens
self._init_messages()
def _init_messages(self):
self.messages = [{"role": "system", "content": self.prompt}]
def reset(self):
self._init_messages()
def ask(self, question, pprint=True):
self.messages.append({"role": "user", "content": question})
if self.num_tokens(self.messages, self.model) >= self.max_tokens:
if len(self.messages) > 3:
self.messages = self.messages[:1] + self.messages[3:] # remove the first user message
else:
return "Error: max tokens exceeded."
try:
response = openai.ChatCompletion.create(
model=self.model,
messages=self.messages
)
except Exception as e:
return e
if pprint:
print(f"tiktoken: {self.num_tokens(self.messages, self.model)}\ntokens: {response['usage']}")
assistant_message = response["choices"][0]["message"]["content"]
self.messages.append({"role": "assistant", "content": assistant_message})
return assistant_message
def num_tokens(self, messages, model):
"""Returns the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo":
print("Warning: gpt-3.5-turbo may change over time. Returning num tokens assuming gpt-3.5-turbo-0301.")
return self.num_tokens(messages, model="gpt-3.5-turbo-0301")
elif model == "gpt-4":
print("Warning: gpt-4 may change over time. Returning num tokens assuming gpt-4-0314.")
return self.num_tokens(messages, model="gpt-4-0314")
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif model == "gpt-4-0314":
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
|