Spaces:
Paused
Paused
File size: 14,130 Bytes
df2296c 0ce7882 df2296c 018a52c df2296c 30609c9 df2296c 0ce7882 6296772 0ce7882 d03eed6 6296772 d03eed6 6296772 d03eed6 6296772 caa306e 02849fc f699662 02849fc d9e008a 02849fc a8846d6 02849fc caa306e 02849fc 8c125e4 a8846d6 8c125e4 a8846d6 8c125e4 a8846d6 8c125e4 a8846d6 8c125e4 a8846d6 53cd821 8c125e4 a8846d6 02849fc 5bbc76e 02849fc 79a36dc 02849fc dfde78e 5b50c1d 8c125e4 02849fc 6296772 02849fc dfde78e f699662 8c125e4 4137ce7 f699662 4cc8e82 53cd821 0ce7882 1821c6c 0ce7882 1821c6c 0ce7882 1821c6c 0ce7882 1821c6c 0ce7882 8c125e4 0ce7882 8c125e4 0ce7882 8c125e4 0ce7882 5bbc76e 0ce7882 1821c6c 53cd821 30609c9 caa306e 4713da5 caa306e 4713da5 8aefe80 30609c9 dfde78e f699662 30609c9 1821c6c 30609c9 f699662 4cc8e82 075739f 4cc8e82 737ec1e 075739f 4cc8e82 f699662 1821c6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
#ref: https://huggingface.co/blog/AmelieSchreiber/esmbind
import gradio as gr
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
#import wandb
import numpy as np
import torch
import torch.nn as nn
import pickle
import xml.etree.ElementTree as ET
from datetime import datetime
from sklearn.model_selection import train_test_split
from sklearn.utils.class_weight import compute_class_weight
from sklearn.metrics import (
accuracy_score,
precision_recall_fscore_support,
roc_auc_score,
matthews_corrcoef
)
from transformers import (
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorForTokenClassification,
TrainingArguments,
Trainer
)
from peft import PeftModel
from datasets import Dataset
from accelerate import Accelerator
# Imports specific to the custom peft lora model
from peft import get_peft_config, PeftModel, PeftConfig, get_peft_model, LoraConfig, TaskType
# Helper Functions and Data Preparation
def truncate_labels(labels, max_length):
"""Truncate labels to the specified max_length."""
return [label[:max_length] for label in labels]
def compute_metrics(p):
"""Compute metrics for evaluation."""
predictions, labels = p
predictions = np.argmax(predictions, axis=2)
# Remove padding (-100 labels)
predictions = predictions[labels != -100].flatten()
labels = labels[labels != -100].flatten()
# Compute accuracy
accuracy = accuracy_score(labels, predictions)
# Compute precision, recall, F1 score, and AUC
precision, recall, f1, _ = precision_recall_fscore_support(labels, predictions, average='binary')
auc = roc_auc_score(labels, predictions)
# Compute MCC
mcc = matthews_corrcoef(labels, predictions)
return {'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f1': f1, 'auc': auc, 'mcc': mcc}
def compute_loss(model, inputs):
"""Custom compute_loss function."""
logits = model(**inputs).logits
labels = inputs["labels"]
loss_fct = nn.CrossEntropyLoss(weight=class_weights)
active_loss = inputs["attention_mask"].view(-1) == 1
active_logits = logits.view(-1, model.config.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
return loss
# Define Custom Trainer Class
# Since we are using class weights, due to the imbalance between non-binding residues and binding residues, we will need a custom weighted trainer.
class WeightedTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
outputs = model(**inputs)
loss = compute_loss(model, inputs)
return (loss, outputs) if return_outputs else loss
# Predict binding site with finetuned PEFT model
def predict_bind(base_model_path,PEFT_model_path,input_seq):
# Load the model
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
loaded_model = PeftModel.from_pretrained(base_model, PEFT_model_path)
# Ensure the model is in evaluation mode
loaded_model.eval()
# Tokenization
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
# Tokenize the sequence
inputs = tokenizer(input_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
# Run the model
with torch.no_grad():
logits = loaded_model(**inputs).logits
# Get predictions
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
predictions = torch.argmax(logits, dim=2)
binding_site=[]
# Print the predicted labels for each token
for n, token, prediction in enumerate(zip(tokens, predictions[0].numpy())):
if token not in ['<pad>', '<cls>', '<eos>']:
print((token, id2label[prediction]))
if prediction == 1:
print((n+1,token, id2label[prediction]))
binding_site.append(n+1,token, id2label[prediction])
return binding_site
# fine-tuning function
def train_function_no_sweeps(base_model_path): #, train_dataset, test_dataset):
# Set the LoRA config
config = {
"lora_alpha": 1, #try 0.5, 1, 2, ..., 16
"lora_dropout": 0.2,
"lr": 5.701568055793089e-04,
"lr_scheduler_type": "cosine",
"max_grad_norm": 0.5,
"num_train_epochs": 1, #3, jw 20240628
"per_device_train_batch_size": 12,
"r": 2,
"weight_decay": 0.2,
# Add other hyperparameters as needed
}
# The base model you will train a LoRA on top of
#base_model_path = "facebook/esm2_t12_35M_UR50D"
# Define labels and model
#id2label = {0: "No binding site", 1: "Binding site"}
#label2id = {v: k for k, v in id2label.items()}
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path, num_labels=len(id2label), id2label=id2label, label2id=label2id)
'''
# Load the data from pickle files (replace with your local paths)
with open("./datasets/train_sequences_chunked_by_family.pkl", "rb") as f:
train_sequences = pickle.load(f)
with open("./datasets/test_sequences_chunked_by_family.pkl", "rb") as f:
test_sequences = pickle.load(f)
with open("./datasets/train_labels_chunked_by_family.pkl", "rb") as f:
train_labels = pickle.load(f)
with open("./datasets/test_labels_chunked_by_family.pkl", "rb") as f:
test_labels = pickle.load(f)
'''
# Tokenization
tokenizer = AutoTokenizer.from_pretrained(base_model_path) #("facebook/esm2_t12_35M_UR50D")
#max_sequence_length = 1000
train_tokenized = tokenizer(train_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", is_split_into_words=False)
test_tokenized = tokenizer(test_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", is_split_into_words=False)
# Directly truncate the entire list of labels
#train_labels = truncate_labels(train_labels, max_sequence_length)
#test_labels = truncate_labels(test_labels, max_sequence_length)
train_dataset = Dataset.from_dict({k: v for k, v in train_tokenized.items()}).add_column("labels", train_labels)
test_dataset = Dataset.from_dict({k: v for k, v in test_tokenized.items()}).add_column("labels", test_labels)
'''
# Compute Class Weights
classes = [0, 1]
flat_train_labels = [label for sublist in train_labels for label in sublist]
class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=flat_train_labels)
accelerator = Accelerator()
class_weights = torch.tensor(class_weights, dtype=torch.float32).to(accelerator.device)
print(" class_weights:", class_weights)
'''
# Convert the model into a PeftModel
peft_config = LoraConfig(
task_type=TaskType.TOKEN_CLS,
inference_mode=False,
r=config["r"],
lora_alpha=config["lora_alpha"],
target_modules=["query", "key", "value"], # also try "dense_h_to_4h" and "dense_4h_to_h"
lora_dropout=config["lora_dropout"],
bias="none" # or "all" or "lora_only"
)
base_model = get_peft_model(base_model, peft_config)
# Use the accelerator
base_model = accelerator.prepare(base_model)
train_dataset = accelerator.prepare(train_dataset)
test_dataset = accelerator.prepare(test_dataset)
timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
# Training setup
training_args = TrainingArguments(
output_dir=f"esm2_t12_35M-lora-binding-sites_{timestamp}",
learning_rate=config["lr"],
lr_scheduler_type=config["lr_scheduler_type"],
gradient_accumulation_steps=1,
max_grad_norm=config["max_grad_norm"],
per_device_train_batch_size=config["per_device_train_batch_size"],
per_device_eval_batch_size=config["per_device_train_batch_size"],
num_train_epochs=config["num_train_epochs"],
weight_decay=config["weight_decay"],
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
metric_for_best_model="f1",
greater_is_better=True,
push_to_hub=True, #jw 20240701 False,
logging_dir=None,
logging_first_step=False,
logging_steps=200,
save_total_limit=7,
no_cuda=False,
seed=8893,
fp16=True,
#report_to='wandb'
report_to=None,
hub_token = HF_TOKEN, #jw 20240701
)
# Initialize Trainer
trainer = WeightedTrainer(
model=base_model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=test_dataset,
tokenizer=tokenizer,
data_collator=DataCollatorForTokenClassification(tokenizer=tokenizer),
compute_metrics=compute_metrics
)
# Train and Save Model
trainer.train()
save_path = os.path.join("lora_binding_sites", f"best_model_esm2_t12_35M_lora_{timestamp}")
trainer.save_model(save_path)
tokenizer.save_pretrained(save_path)
return save_path
# Constants & Globals
HF_TOKEN = os.environ.get("HF_TOKEN")
MODEL_OPTIONS = [
"facebook/esm2_t6_8M_UR50D",
"facebook/esm2_t12_35M_UR50D",
"facebook/esm2_t33_650M_UR50D",
] # models users can choose from
PEFT_MODEL_OPTIONS = [
"AmelieSchreiber/esm2_t12_35M_lora_binding_sites_v2_cp3",
] # finetuned models
# Load the data from pickle files (replace with your local paths)
with open("./datasets/train_sequences_chunked_by_family.pkl", "rb") as f:
train_sequences = pickle.load(f)
with open("./datasets/test_sequences_chunked_by_family.pkl", "rb") as f:
test_sequences = pickle.load(f)
with open("./datasets/train_labels_chunked_by_family.pkl", "rb") as f:
train_labels = pickle.load(f)
with open("./datasets/test_labels_chunked_by_family.pkl", "rb") as f:
test_labels = pickle.load(f)
## Tokenization
#tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t12_35M_UR50D")
max_sequence_length = 1000
#train_tokenized = tokenizer(train_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", is_split_into_words=False)
#test_tokenized = tokenizer(test_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", is_split_into_words=False)
# Directly truncate the entire list of labels
train_labels = truncate_labels(train_labels, max_sequence_length)
test_labels = truncate_labels(test_labels, max_sequence_length)
#train_dataset = Dataset.from_dict({k: v for k, v in train_tokenized.items()}).add_column("labels", train_labels)
#test_dataset = Dataset.from_dict({k: v for k, v in test_tokenized.items()}).add_column("labels", test_labels)
# Compute Class Weights
classes = [0, 1]
flat_train_labels = [label for sublist in train_labels for label in sublist]
class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=flat_train_labels)
accelerator = Accelerator()
class_weights = torch.tensor(class_weights, dtype=torch.float32).to(accelerator.device)
'''
# inference
# Path to the saved LoRA model
model_path = "AmelieSchreiber/esm2_t12_35M_lora_binding_sites_v2_cp3"
# ESM2 base model
base_model_path = "facebook/esm2_t12_35M_UR50D"
# Load the model
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
loaded_model = PeftModel.from_pretrained(base_model, model_path)
# Ensure the model is in evaluation mode
loaded_model.eval()
# Protein sequence for inference
protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence
# Tokenize the sequence
inputs = tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
# Run the model
with torch.no_grad():
logits = loaded_model(**inputs).logits
# Get predictions
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
predictions = torch.argmax(logits, dim=2)
'''
# Define labels
id2label = {
0: "No binding site",
1: "Binding site"
}
'''
# Print the predicted labels for each token
for token, prediction in zip(tokens, predictions[0].numpy()):
if token not in ['<pad>', '<cls>', '<eos>']:
print((token, id2label[prediction]))
# train
saved_path = train_function_no_sweeps(base_model_path,train_dataset, test_dataset)
# debug result
dubug_result = saved_path #predictions #class_weights
'''
demo = gr.Blocks(title="DEMO FOR ESM2Bind")
with demo:
gr.Markdown("# DEMO FOR ESM2Bind")
#gr.Textbox(dubug_result)
gr.Markdown("## Finetune Pre-trained Model")
with gr.Column():
gr.Markdown("## Select a base model")
gr.Markdown(
""" Pick a base model and press **Finetune Pre-trained Model!"""
)
with gr.Row():
with gr.Column(scale=0.5, variant="compact"):
base_model_name = gr.Dropdown(
choices=MODEL_OPTIONS,
value=MODEL_OPTIONS[0],
label="Base Model Name",
interactive = True,
)
with gr.Column(scale=0.5, variant="compact"):
finetune_button = gr.Button(
value="Finetune Pre-trained Model",
interactive=True,
variant="primary",
)
with gr.Row():
finetune_output_text = gr.Textbox(
lines=1,
max_lines=12,
label="Finetune Status",
placeholder="Finetune Status Shown Here",
)
# "Finetune Pre-trained Model" actions
finetune_button.click(
fn = train_function_no_sweeps,
inputs=[base_model_name], #finetune_dataset_name],
outputs = [finetune_output_text],
)
demo.launch() |