File size: 12,805 Bytes
df2296c
0ce7882
df2296c
 
 
018a52c
df2296c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30609c9
 
df2296c
 
 
0ce7882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6296772
0ce7882
 
 
 
 
 
 
 
 
 
 
 
d03eed6
 
 
6296772
d03eed6
6296772
d03eed6
6296772
 
02849fc
f699662
02849fc
 
 
 
 
 
 
 
d9e008a
02849fc
 
 
 
 
 
a8846d6
02849fc
 
 
 
 
 
8c125e4
a8846d6
 
 
 
 
 
 
 
 
 
 
 
8c125e4
a8846d6
 
 
8c125e4
a8846d6
 
 
 
 
8c125e4
 
a8846d6
 
 
 
8c125e4
a8846d6
 
 
 
 
 
53cd821
8c125e4
a8846d6
02849fc
 
 
 
 
 
 
 
 
 
 
 
 
5bbc76e
 
 
02849fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79a36dc
02849fc
 
 
 
 
 
 
dfde78e
5b50c1d
8c125e4
02849fc
 
 
 
 
 
 
 
 
 
6296772
02849fc
 
 
 
 
 
 
 
dfde78e
f699662
 
8c125e4
4137ce7
f699662
 
 
 
 
 
53cd821
0ce7882
1821c6c
0ce7882
 
1821c6c
0ce7882
 
1821c6c
0ce7882
 
1821c6c
0ce7882
 
8c125e4
 
0ce7882
 
8c125e4
 
0ce7882
 
 
 
 
8c125e4
 
0ce7882
5bbc76e
0ce7882
 
 
 
 
 
1821c6c
53cd821
30609c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4713da5
 
 
 
 
 
 
 
 
 
8aefe80
 
 
 
30609c9
dfde78e
f699662
30609c9
 
1821c6c
 
30609c9
f699662
 
 
 
 
 
 
32f88a3
f699662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821c6c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#ref: https://huggingface.co/blog/AmelieSchreiber/esmbind
import gradio as gr

import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
#import wandb
import numpy as np
import torch
import torch.nn as nn
import pickle
import xml.etree.ElementTree as ET
from datetime import datetime
from sklearn.model_selection import train_test_split
from sklearn.utils.class_weight import compute_class_weight
from sklearn.metrics import (
    accuracy_score, 
    precision_recall_fscore_support, 
    roc_auc_score, 
    matthews_corrcoef
)
from transformers import (
    AutoModelForTokenClassification,
    AutoTokenizer,
    DataCollatorForTokenClassification,
    TrainingArguments,
    Trainer
)

from peft import PeftModel

from datasets import Dataset
from accelerate import Accelerator
# Imports specific to the custom peft lora model
from peft import get_peft_config, PeftModel, PeftConfig, get_peft_model, LoraConfig, TaskType


# Helper Functions and Data Preparation
def truncate_labels(labels, max_length):
    """Truncate labels to the specified max_length."""
    return [label[:max_length] for label in labels]

def compute_metrics(p):
    """Compute metrics for evaluation."""
    predictions, labels = p
    predictions = np.argmax(predictions, axis=2)
    
    # Remove padding (-100 labels)
    predictions = predictions[labels != -100].flatten()
    labels = labels[labels != -100].flatten()
    
    # Compute accuracy
    accuracy = accuracy_score(labels, predictions)
    
    # Compute precision, recall, F1 score, and AUC
    precision, recall, f1, _ = precision_recall_fscore_support(labels, predictions, average='binary')
    auc = roc_auc_score(labels, predictions)
    
    # Compute MCC
    mcc = matthews_corrcoef(labels, predictions) 
    
    return {'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f1': f1, 'auc': auc, 'mcc': mcc} 

def compute_loss(model, inputs): 
    """Custom compute_loss function."""
    logits = model(**inputs).logits
    labels = inputs["labels"]
    loss_fct = nn.CrossEntropyLoss(weight=class_weights)
    active_loss = inputs["attention_mask"].view(-1) == 1
    active_logits = logits.view(-1, model.config.num_labels)
    active_labels = torch.where(
        active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
    )
    loss = loss_fct(active_logits, active_labels)
    return loss

# Define Custom Trainer Class
# Since we are using class weights, due to the imbalance between non-binding residues and binding residues, we will need a custom weighted trainer.
class WeightedTrainer(Trainer):
    def compute_loss(self, model, inputs, return_outputs=False): 
        outputs = model(**inputs)
        loss = compute_loss(model, inputs) 
        return (loss, outputs) if return_outputs else loss

#         
# fine-tuning function
def train_function_no_sweeps(base_model_path):   #, train_dataset, test_dataset):
    
    # Set the LoRA config
    config = {
        "lora_alpha": 1, #try 0.5, 1, 2, ..., 16
        "lora_dropout": 0.2,
        "lr": 5.701568055793089e-04,
        "lr_scheduler_type": "cosine",
        "max_grad_norm": 0.5,
        "num_train_epochs": 1,  #3, jw 20240628
        "per_device_train_batch_size": 12,
        "r": 2,
        "weight_decay": 0.2,
        # Add other hyperparameters as needed
    }
    # The base model you will train a LoRA on top of
    #base_model_path = "facebook/esm2_t12_35M_UR50D"  
    
    # Define labels and model
    id2label = {0: "No binding site", 1: "Binding site"}
    label2id = {v: k for k, v in id2label.items()}
    base_model = AutoModelForTokenClassification.from_pretrained(base_model_path, num_labels=len(id2label), id2label=id2label, label2id=label2id)

    '''
    # Load the data from pickle files (replace with your local paths)
    with open("./datasets/train_sequences_chunked_by_family.pkl", "rb") as f:
        train_sequences = pickle.load(f)
    
    with open("./datasets/test_sequences_chunked_by_family.pkl", "rb") as f:
        test_sequences = pickle.load(f)
    
    with open("./datasets/train_labels_chunked_by_family.pkl", "rb") as f:
        train_labels = pickle.load(f)
    
    with open("./datasets/test_labels_chunked_by_family.pkl", "rb") as f:
        test_labels = pickle.load(f)
    '''
    
    # Tokenization
    tokenizer = AutoTokenizer.from_pretrained(base_model_path) #("facebook/esm2_t12_35M_UR50D")
    #max_sequence_length = 1000
    
    train_tokenized = tokenizer(train_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", is_split_into_words=False)
    test_tokenized = tokenizer(test_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", is_split_into_words=False)
    
    # Directly truncate the entire list of labels
    #train_labels = truncate_labels(train_labels, max_sequence_length)
    #test_labels = truncate_labels(test_labels, max_sequence_length)
    
    train_dataset = Dataset.from_dict({k: v for k, v in train_tokenized.items()}).add_column("labels", train_labels)
    test_dataset = Dataset.from_dict({k: v for k, v in test_tokenized.items()}).add_column("labels", test_labels)
    
    '''
    # Compute Class Weights
    classes = [0, 1]  
    flat_train_labels = [label for sublist in train_labels for label in sublist]
    class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=flat_train_labels)
    accelerator = Accelerator()
    class_weights = torch.tensor(class_weights, dtype=torch.float32).to(accelerator.device)  
    print(" class_weights:", class_weights)
    '''
    
    # Convert the model into a PeftModel
    peft_config = LoraConfig(
        task_type=TaskType.TOKEN_CLS, 
        inference_mode=False, 
        r=config["r"], 
        lora_alpha=config["lora_alpha"], 
        target_modules=["query", "key", "value"], # also try "dense_h_to_4h" and "dense_4h_to_h"
        lora_dropout=config["lora_dropout"], 
        bias="none" # or "all" or "lora_only" 
    )
    base_model = get_peft_model(base_model, peft_config)

    # Use the accelerator
    base_model = accelerator.prepare(base_model)
    train_dataset = accelerator.prepare(train_dataset)
    test_dataset = accelerator.prepare(test_dataset)

    timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')

    # Training setup
    training_args = TrainingArguments(
        output_dir=f"esm2_t12_35M-lora-binding-sites_{timestamp}",
        learning_rate=config["lr"],
        lr_scheduler_type=config["lr_scheduler_type"],
        gradient_accumulation_steps=1,
        max_grad_norm=config["max_grad_norm"],
        per_device_train_batch_size=config["per_device_train_batch_size"],
        per_device_eval_batch_size=config["per_device_train_batch_size"],
        num_train_epochs=config["num_train_epochs"],
        weight_decay=config["weight_decay"],
        evaluation_strategy="epoch",
        save_strategy="epoch",
        load_best_model_at_end=True,
        metric_for_best_model="f1",
        greater_is_better=True,
        push_to_hub=True,  #jw 20240701  False,
        logging_dir=None,
        logging_first_step=False,
        logging_steps=200,
        save_total_limit=7,
        no_cuda=False,
        seed=8893,
        fp16=True,
        #report_to='wandb'
        report_to=None,
        hub_token = HF_TOKEN, #jw 20240701
    )

    # Initialize Trainer
    trainer = WeightedTrainer(
        model=base_model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=test_dataset,
        tokenizer=tokenizer,
        data_collator=DataCollatorForTokenClassification(tokenizer=tokenizer),
        compute_metrics=compute_metrics
    )

    # Train and Save Model
    trainer.train()
    save_path = os.path.join("lora_binding_sites", f"best_model_esm2_t12_35M_lora_{timestamp}")
    trainer.save_model(save_path)
    tokenizer.save_pretrained(save_path)

    return save_path

# Constants & Globals
HF_TOKEN = os.environ.get("HF_TOKEN")

MODEL_OPTIONS = [
    "facebook/esm2_t6_8M_UR50D",
    "facebook/esm2_t12_35M_UR50D",
    "facebook/esm2_t33_650M_UR50D",
]  # models users can choose from


# Load the data from pickle files (replace with your local paths)
with open("./datasets/train_sequences_chunked_by_family.pkl", "rb") as f:
    train_sequences = pickle.load(f)

with open("./datasets/test_sequences_chunked_by_family.pkl", "rb") as f:
    test_sequences = pickle.load(f)

with open("./datasets/train_labels_chunked_by_family.pkl", "rb") as f:
    train_labels = pickle.load(f)

with open("./datasets/test_labels_chunked_by_family.pkl", "rb") as f:
    test_labels = pickle.load(f)

## Tokenization
#tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t12_35M_UR50D")
max_sequence_length = 1000

#train_tokenized = tokenizer(train_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", is_split_into_words=False)
#test_tokenized = tokenizer(test_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", is_split_into_words=False)

# Directly truncate the entire list of labels
train_labels = truncate_labels(train_labels, max_sequence_length)
test_labels = truncate_labels(test_labels, max_sequence_length)

#train_dataset = Dataset.from_dict({k: v for k, v in train_tokenized.items()}).add_column("labels", train_labels)
#test_dataset = Dataset.from_dict({k: v for k, v in test_tokenized.items()}).add_column("labels", test_labels)


# Compute Class Weights
classes = [0, 1]  
flat_train_labels = [label for sublist in train_labels for label in sublist]
class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=flat_train_labels)
accelerator = Accelerator()
class_weights = torch.tensor(class_weights, dtype=torch.float32).to(accelerator.device)

'''
# inference
# Path to the saved LoRA model
model_path = "AmelieSchreiber/esm2_t12_35M_lora_binding_sites_v2_cp3"
# ESM2 base model
base_model_path = "facebook/esm2_t12_35M_UR50D"

# Load the model
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
loaded_model = PeftModel.from_pretrained(base_model, model_path)

# Ensure the model is in evaluation mode
loaded_model.eval()

# Protein sequence for inference
protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT"  # Replace with your actual sequence

# Tokenize the sequence
inputs = tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')

# Run the model
with torch.no_grad():
    logits = loaded_model(**inputs).logits

# Get predictions
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])  # Convert input ids back to tokens
predictions = torch.argmax(logits, dim=2)

# Define labels
id2label = {
    0: "No binding site",
    1: "Binding site"
}

# Print the predicted labels for each token
for token, prediction in zip(tokens, predictions[0].numpy()):
    if token not in ['<pad>', '<cls>', '<eos>']:
        print((token, id2label[prediction]))

# train
saved_path = train_function_no_sweeps(base_model_path,train_dataset, test_dataset)

# debug result
dubug_result = saved_path  #predictions  #class_weights
'''

demo = gr.Blocks(title="DEMO FOR ESM2Bind")

with demo:
    gr.Markdown("# DEMO FOR ESM2Bind")
    #gr.Textbox(dubug_result)
    
    with gr.Tab("Finetune Pre-trained Model"):
        gr.Markdown("## Finetune Pre-trained Model")
        with gr.Column():
            gr.Markdown("## Load Inputs & Select Parameters")
            gr.Markdown(
                """ Pick a base model and press **Finetune Pre-trained Model!"""
            )
            with gr.Row():   
                with gr.Column(scale=0.5, variant="compact"):
                    base_model_name = gr.Dropdown(
                        choices=MODEL_OPTIONS,
                        value=MODEL_OPTIONS[0],
                        label="Base Model Name",
                        interactive = True,
                    )   
                    finetune_button = gr.Button(
                        value="Finetune Pre-trained Model", 
                        interactive=True, 
                        variant="primary",
                    )
                    finetune_output_text = gr.Textbox(
                        lines=1,
                        max_lines=12,
                        label="Finetune Status",
                        placeholder="Finetune Status Shown Here",
                    )    
    # Tab "Finetune Pre-trained Model" actions
    finetune_button.click(
        fn = train_function_no_sweeps,
        inputs=[base_model_name], #finetune_dataset_name],
        outputs = [finetune_output_text],
    )
           

demo.launch()