Spaces:
Build error
Build error
File size: 16,102 Bytes
c0fdaf5 f531c2f c0fdaf5 f531c2f c0fdaf5 84b1cf9 c0fdaf5 f531c2f 84b1cf9 c0fdaf5 84b1cf9 f531c2f 84b1cf9 c0fdaf5 7b06b6a c0fdaf5 fd6090f 9ff8988 c0fdaf5 7b06b6a 0cf1eff f81785c 7b06b6a c0fdaf5 7b06b6a c0fdaf5 4af2baf c0fdaf5 7b06b6a c0fdaf5 7b06b6a c0fdaf5 7b06b6a c0fdaf5 7b06b6a c0fdaf5 53cae7c 1c5a051 53cae7c c0fdaf5 7b06b6a c0fdaf5 59f7fc7 619e2e5 a2f1793 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import os
import json
import torch
import random
import gradio as gr
from glob import glob
from omegaconf import OmegaConf
from datetime import datetime
from safetensors import safe_open
from diffusers import AutoencoderKL
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer
from animatelcm.scheduler.lcm_scheduler import LCMScheduler
from animatelcm.models.unet import UNet3DConditionModel
from animatelcm.pipelines.pipeline_animation import AnimationPipeline
from animatelcm.utils.util import save_videos_grid
from animatelcm.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
from animatelcm.utils.convert_lora_safetensor_to_diffusers import convert_lora
from animatelcm.utils.lcm_utils import convert_lcm_lora
import copy
sample_idx = 0
scheduler_dict = {
"LCM": LCMScheduler,
}
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
class AnimateController:
def __init__(self):
# config dirs
self.basedir = os.getcwd()
self.stable_diffusion_dir = os.path.join(
self.basedir, "models", "StableDiffusion")
self.motion_module_dir = os.path.join(
self.basedir, "models", "Motion_Module")
self.personalized_model_dir = os.path.join(
self.basedir, "models", "DreamBooth_LoRA")
self.savedir = os.path.join(
self.basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
self.savedir_sample = os.path.join(self.savedir, "sample")
self.lcm_lora_path = "models/LCM_LoRA/sd15_t2v_beta_lora.safetensors"
os.makedirs(self.savedir, exist_ok=True)
self.stable_diffusion_list = []
self.motion_module_list = []
self.personalized_model_list = []
self.refresh_stable_diffusion()
self.refresh_motion_module()
self.refresh_personalized_model()
# config models
self.tokenizer = None
self.text_encoder = None
self.vae = None
self.unet = None
self.pipeline = None
self.lora_model_state_dict = {}
self.inference_config = OmegaConf.load("configs/inference.yaml")
def refresh_stable_diffusion(self):
self.stable_diffusion_list = glob(
os.path.join(self.stable_diffusion_dir, "*/"))
def refresh_motion_module(self):
motion_module_list = glob(os.path.join(
self.motion_module_dir, "*.ckpt"))
self.motion_module_list = [
os.path.basename(p) for p in motion_module_list]
def refresh_personalized_model(self):
personalized_model_list = glob(os.path.join(
self.personalized_model_dir, "*.safetensors"))
self.personalized_model_list = [
os.path.basename(p) for p in personalized_model_list]
def update_stable_diffusion(self, stable_diffusion_dropdown):
stable_diffusion_dropdown = os.path.join(self.stable_diffusion_dir,stable_diffusion_dropdown)
self.tokenizer = CLIPTokenizer.from_pretrained(
stable_diffusion_dropdown, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(
stable_diffusion_dropdown, subfolder="text_encoder").cuda()
self.vae = AutoencoderKL.from_pretrained(
stable_diffusion_dropdown, subfolder="vae").cuda()
self.unet = UNet3DConditionModel.from_pretrained_2d(
stable_diffusion_dropdown, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda()
return gr.Dropdown.update()
def update_motion_module(self, motion_module_dropdown):
if self.unet is None:
gr.Info(f"Please select a pretrained model path.")
return gr.Dropdown.update(value=None)
else:
motion_module_dropdown = os.path.join(
self.motion_module_dir, motion_module_dropdown)
motion_module_state_dict = torch.load(
motion_module_dropdown, map_location="cpu")
missing, unexpected = self.unet.load_state_dict(
motion_module_state_dict, strict=False)
del motion_module_state_dict
assert len(unexpected) == 0
return gr.Dropdown.update()
def update_base_model(self, base_model_dropdown):
if self.unet is None:
gr.Info(f"Please select a pretrained model path.")
return gr.Dropdown.update(value=None)
else:
base_model_dropdown = os.path.join(
self.personalized_model_dir, base_model_dropdown)
base_model_state_dict = {}
with safe_open(base_model_dropdown, framework="pt", device="cpu") as f:
for key in f.keys():
base_model_state_dict[key] = f.get_tensor(key)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(
base_model_state_dict, self.vae.config)
self.vae.load_state_dict(converted_vae_checkpoint)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
base_model_state_dict, self.unet.config)
self.unet.load_state_dict(converted_unet_checkpoint, strict=False)
del converted_unet_checkpoint
del converted_vae_checkpoint
del base_model_state_dict
# self.text_encoder = convert_ldm_clip_checkpoint(base_model_state_dict)
return gr.Dropdown.update()
def update_lora_model(self, lora_model_dropdown):
lora_model_dropdown = os.path.join(
self.personalized_model_dir, lora_model_dropdown)
self.lora_model_state_dict = {}
if lora_model_dropdown == "none":
pass
else:
with safe_open(lora_model_dropdown, framework="pt", device="cpu") as f:
for key in f.keys():
self.lora_model_state_dict[key] = f.get_tensor(key)
return gr.Dropdown.update()
@torch.no_grad()
def animate(
self,
lora_alpha_slider,
spatial_lora_slider,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
width_slider,
length_slider,
height_slider,
cfg_scale_slider,
seed_textbox
):
if is_xformers_available():
self.unet.enable_xformers_memory_efficient_attention()
pipeline = AnimationPipeline(
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet,
scheduler=scheduler_dict[sampler_dropdown](
**OmegaConf.to_container(self.inference_config.noise_scheduler_kwargs))
).to("cuda")
original_state_dict = {k: v.cpu().clone() for k, v in pipeline.unet.state_dict().items() if "motion_modules." not in k}
pipeline.unet = convert_lcm_lora(pipeline.unet, self.lcm_lora_path, spatial_lora_slider)
pipeline.to("cuda")
if seed_textbox != -1 and seed_textbox != "":
torch.manual_seed(int(seed_textbox))
else:
torch.seed()
seed = torch.initial_seed()
with torch.autocast("cuda"):
sample = pipeline(
prompt_textbox,
negative_prompt=negative_prompt_textbox,
num_inference_steps=sample_step_slider,
guidance_scale=cfg_scale_slider,
width=width_slider,
height=height_slider,
video_length=length_slider,
).videos
pipeline.unet.load_state_dict(original_state_dict,strict=False)
del original_state_dict
save_sample_path = os.path.join(
self.savedir_sample, f"{sample_idx}.mp4")
save_videos_grid(sample, save_sample_path)
sample_config = {
"prompt": prompt_textbox,
"n_prompt": negative_prompt_textbox,
"sampler": sampler_dropdown,
"num_inference_steps": sample_step_slider,
"guidance_scale": cfg_scale_slider,
"width": width_slider,
"height": height_slider,
"video_length": length_slider,
"seed": seed
}
json_str = json.dumps(sample_config, indent=4)
with open(os.path.join(self.savedir, "logs.json"), "a") as f:
f.write(json_str)
f.write("\n\n")
return gr.Video.update(value=save_sample_path)
controller = AnimateController()
controller.update_stable_diffusion("stable-diffusion-v1-5")
controller.update_motion_module("sd15_t2v_beta_motion.ckpt")
controller.update_base_model("realistic2.safetensors")
def ui():
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# [AnimateLCM: Accelerating the Animation of Personalized Diffusion Models and Adapters with Decoupled Consistency Learning](https://arxiv.org/abs/2402.00769)
Fu-Yun Wang, Zhaoyang Huang (*Corresponding Author), Xiaoyu Shi, Weikang Bian, Guanglu Song, Yu Liu, Hongsheng Li (*Corresponding Author)<br>
[arXiv Report](https://arxiv.org/abs/2402.00769) | [Project Page](https://animatelcm.github.io/) | [Github](https://github.com/G-U-N/AnimateLCM) | [Civitai](https://civitai.com/models/290375/animatelcm-fast-video-generation) | [Replicate](https://replicate.com/camenduru/animate-lcm)
Related Models:
[AnimateLCM-t2v](https://huggingface.co/wangfuyun/AnimateLCM): Personalized Text-to-Video Generation
[AnimateLCM-SVD-xt](https://huggingface.co/wangfuyun/AnimateLCM-SVD-xt): General Image-to-Video Generation
[AnimateLCM-i2v](https://huggingface.co/wangfuyun/AnimateLCM-I2V): Personalized Image-to-Video Generation
"""
'''
Important Notes:
1. The generation speed is around few seconds. There is delay in the space.
2. Increase the sampling step and cfg and set proper negative prompt if you want more fancy videos.
'''
)
with gr.Column(variant="panel"):
with gr.Row():
base_model_dropdown = gr.Dropdown(
label="Select base Dreambooth model (required)",
choices=controller.personalized_model_list,
interactive=True,
value="realistic2.safetensors"
)
base_model_dropdown.change(fn=controller.update_base_model, inputs=[
base_model_dropdown], outputs=[base_model_dropdown])
lora_model_dropdown = gr.Dropdown(
label="Select LoRA model (optional)",
choices=["none",],
value="none",
interactive=True,
)
lora_model_dropdown.change(fn=controller.update_lora_model, inputs=[
lora_model_dropdown], outputs=[lora_model_dropdown])
lora_alpha_slider = gr.Slider(
label="LoRA alpha", value=0.8, minimum=0, maximum=2, interactive=True)
spatial_lora_slider = gr.Slider(
label="LCM LoRA alpha", value=0.8, minimum=0.0, maximum=1.0, interactive=True)
personalized_refresh_button = gr.Button(
value="\U0001F503", elem_classes="toolbutton")
def update_personalized_model():
controller.refresh_personalized_model()
return [
gr.Dropdown.update(
choices=controller.personalized_model_list),
gr.Dropdown.update(
choices=["none"] + controller.personalized_model_list)
]
personalized_refresh_button.click(fn=update_personalized_model, inputs=[], outputs=[
base_model_dropdown, lora_model_dropdown])
with gr.Column(variant="panel"):
gr.Markdown(
"""
### 2. Configs for AnimateLCM.
"""
)
prompt_textbox = gr.Textbox(label="Prompt", lines=2, value="a boy holding a rabbit")
negative_prompt_textbox = gr.Textbox(
label="Negative prompt", lines=2, value="bad quality")
with gr.Row().style(equal_height=False):
with gr.Column():
with gr.Row():
sampler_dropdown = gr.Dropdown(label="Sampling method", choices=list(
scheduler_dict.keys()), value=list(scheduler_dict.keys())[0])
sample_step_slider = gr.Slider(
label="Sampling steps", value=6, minimum=1, maximum=25, step=1)
width_slider = gr.Slider(
label="Width", value=512, minimum=256, maximum=1024, step=64)
height_slider = gr.Slider(
label="Height", value=512, minimum=256, maximum=1024, step=64)
length_slider = gr.Slider(
label="Animation length", value=16, minimum=12, maximum=20, step=1)
cfg_scale_slider = gr.Slider(
label="CFG Scale", value=1.5, minimum=1, maximum=2)
with gr.Row():
seed_textbox = gr.Textbox(label="Seed", value=-1)
seed_button = gr.Button(
value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(fn=lambda: gr.Textbox.update(
value=random.randint(1, 1e8)), inputs=[], outputs=[seed_textbox])
generate_button = gr.Button(
value="Generate", variant='primary')
result_video = gr.Video(
label="Generated Animation", interactive=False)
generate_button.click(
fn=controller.animate,
inputs=[
lora_alpha_slider,
spatial_lora_slider,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
width_slider,
length_slider,
height_slider,
cfg_scale_slider,
seed_textbox,
],
outputs=[result_video]
)
examples = [
[0.8, 0.8, "a boy is holding a rabbit", "bad quality", "LCM", 8, 512, 16, 512, 1.5, 123],
[0.8, 0.8, "1girl smiling", "bad quality", "LCM", 4, 512, 16, 512, 1.5, 1233],
[0.8, 0.8, "1girl,face,white background,", "bad quality", "LCM", 6, 512, 16, 512, 1.5, 1234],
[0.8, 0.8, "clouds in the sky, best quality", "bad quality", "LCM", 4, 512, 16, 512, 1.5, 1234],
]
gr.Examples(
examples = examples,
inputs=[
lora_alpha_slider,
spatial_lora_slider,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
width_slider,
length_slider,
height_slider,
cfg_scale_slider,
seed_textbox,
],
outputs=[result_video],
fn=controller.animate,
cache_examples=True,
)
return demo
if __name__ == "__main__":
demo = ui()
# gr.close_all()
# restart
demo.queue(api_open=False)
demo.launch()
|