File size: 18,696 Bytes
992a789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput, logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import SchedulerMixin


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class AnimateLCMSVDStochasticIterativeSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
    """

    prev_sample: torch.FloatTensor


class AnimateLCMSVDStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
    """
    Multistep and onestep sampling for consistency models.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 40):
            The number of diffusion steps to train the model.
        sigma_min (`float`, defaults to 0.002):
            Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation.
        sigma_max (`float`, defaults to 80.0):
            Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation.
        sigma_data (`float`, defaults to 0.5):
            The standard deviation of the data distribution from the EDM
            [paper](https://huggingface.co/papers/2206.00364). Defaults to 0.5 from the original implementation.
        s_noise (`float`, defaults to 1.0):
            The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
            1.011]. Defaults to 1.0 from the original implementation.
        rho (`float`, defaults to 7.0):
            The parameter for calculating the Karras sigma schedule from the EDM
            [paper](https://huggingface.co/papers/2206.00364). Defaults to 7.0 from the original implementation.
        clip_denoised (`bool`, defaults to `True`):
            Whether to clip the denoised outputs to `(-1, 1)`.
        timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*):
            An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in
            increasing order.
    """

    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 40,
        sigma_min: float = 0.002,
        sigma_max: float = 80.0,
        sigma_data: float = 0.5,
        s_noise: float = 1.0,
        rho: float = 7.0,
        clip_denoised: bool = True,
    ):
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = (sigma_max**2 + 1) ** 0.5
        # self.init_noise_sigma = sigma_max

        ramp = np.linspace(0, 1, num_train_timesteps)
        sigmas = self._convert_to_karras(ramp)
        sigmas = np.concatenate([sigmas, np.array([0])])
        timesteps = self.sigma_to_t(sigmas)

        # setable values
        self.num_inference_steps = None
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps)
        self.custom_timesteps = False
        self.is_scale_input_called = False
        self._step_index = None
        self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication

    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()
        return indices.item()

    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increae 1 after each scheduler step.
        """
        return self._step_index

    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
        Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`.

        Args:
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`float` or `torch.FloatTensor`):
                The current timestep in the diffusion chain.

        Returns:
            `torch.FloatTensor`:
                A scaled input sample.
        """
        # Get sigma corresponding to timestep
        if self.step_index is None:
            self._init_step_index(timestep)

        sigma = self.sigmas[self.step_index]
        sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)

        self.is_scale_input_called = True
        return sample

    # def _sigma_to_t(self, sigma, log_sigmas):
    #     # get log sigma
    #     log_sigma = np.log(np.maximum(sigma, 1e-10))

    #     # get distribution
    #     dists = log_sigma - log_sigmas[:, np.newaxis]

    #     # get sigmas range
    #     low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
    #     high_idx = low_idx + 1

    #     low = log_sigmas[low_idx]
    #     high = log_sigmas[high_idx]

    #     # interpolate sigmas
    #     w = (low - log_sigma) / (low - high)
    #     w = np.clip(w, 0, 1)

    #     # transform interpolation to time range
    #     t = (1 - w) * low_idx + w * high_idx
    #     t = t.reshape(sigma.shape)
    #     return t

    def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
        """
        Gets scaled timesteps from the Karras sigmas for input to the consistency model.

        Args:
            sigmas (`float` or `np.ndarray`):
                A single Karras sigma or an array of Karras sigmas.

        Returns:
            `float` or `np.ndarray`:
                A scaled input timestep or scaled input timestep array.
        """
        if not isinstance(sigmas, np.ndarray):
            sigmas = np.array(sigmas, dtype=np.float64)

        timesteps = 0.25 * np.log(sigmas + 1e-44)

        return timesteps

    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
        """
        Sets the timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.
        """
        if num_inference_steps is None and timesteps is None:
            raise ValueError(
                "Exactly one of `num_inference_steps` or `timesteps` must be supplied."
            )

        if num_inference_steps is not None and timesteps is not None:
            raise ValueError(
                "Can only pass one of `num_inference_steps` or `timesteps`."
            )

        # Follow DDPMScheduler custom timesteps logic
        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps}."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )

            self.num_inference_steps = num_inference_steps

            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            timesteps = (
                (np.arange(0, num_inference_steps) * step_ratio)
                .round()[::-1]
                .copy()
                .astype(np.int64)
            )
            self.custom_timesteps = False

        # Map timesteps to Karras sigmas directly for multistep sampling
        # See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
        num_train_timesteps = self.config.num_train_timesteps
        ramp = timesteps[::-1].copy()
        ramp = ramp / (num_train_timesteps - 1)
        sigmas = self._convert_to_karras(ramp)
        timesteps = self.sigma_to_t(sigmas)

        sigmas = np.concatenate([sigmas, [0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas).to(device=device)

        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)

        self._step_index = None
        self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication

    # Modified _convert_to_karras implementation that takes in ramp as argument
    def _convert_to_karras(self, ramp):
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = self.config.sigma_min
        sigma_max: float = self.config.sigma_max

        rho = self.config.rho
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

    def get_scalings(self, sigma):
        sigma_data = self.config.sigma_data

        c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
        c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        return c_skip, c_out

    def get_scalings_for_boundary_condition(self, sigma):
        """
        Gets the scalings used in the consistency model parameterization (from Appendix C of the
        [paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition.

        <Tip>

        `epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`.

        </Tip>

        Args:
            sigma (`torch.FloatTensor`):
                The current sigma in the Karras sigma schedule.

        Returns:
            `tuple`:
                A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out`
                (which weights the consistency model output) is the second element.
        """
        sigma_min = self.config.sigma_min
        sigma_data = self.config.sigma_data

        c_skip = sigma_data**2 / ((sigma) ** 2 + sigma_data**2)
        c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        return c_skip, c_out

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        index_candidates = (self.timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        if len(index_candidates) > 1:
            step_index = index_candidates[1]
        else:
            step_index = index_candidates[0]

        self._step_index = step_index.item()

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[AnimateLCMSVDStochasticIterativeSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model.
            timestep (`float`):
                The current timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a
                [`~schedulers.scheduling_consistency_models.AnimateLCMSVDStochasticIterativeSchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_consistency_models.AnimateLCMSVDStochasticIterativeSchedulerOutput`] or `tuple`:
                If return_dict is `True`,
                [`~schedulers.scheduling_consistency_models.AnimateLCMSVDStochasticIterativeSchedulerOutput`] is returned,
                otherwise a tuple is returned where the first element is the sample tensor.
        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    f" `{self.__class__}.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if not self.is_scale_input_called:
            logger.warning(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        sigma_min = self.config.sigma_min
        sigma_max = self.config.sigma_max

        if self.step_index is None:
            self._init_step_index(timestep)

        # sigma_next corresponds to next_t in original implementation
        sigma = self.sigmas[self.step_index]
        if self.step_index + 1 < self.config.num_train_timesteps:
            sigma_next = self.sigmas[self.step_index + 1]
        else:
            # Set sigma_next to sigma_min
            sigma_next = self.sigmas[-1]

        # Get scalings for boundary conditions

        c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)

        # 1. Denoise model output using boundary conditions
        denoised = c_out * model_output + c_skip * sample
        if self.config.clip_denoised:
            denoised = denoised.clamp(-1, 1)

        # 2. Sample z ~ N(0, s_noise^2 * I)
        # Noise is not used for onestep sampling.
        if len(self.timesteps) > 1:
            noise = randn_tensor(
                model_output.shape,
                dtype=model_output.dtype,
                device=model_output.device,
                generator=generator,
            )
        else:
            noise = torch.zeros_like(model_output)
        z = noise * self.config.s_noise

        sigma_hat = sigma_next.clamp(min=0, max=sigma_max)

        print("denoise currently")
        print(sigma_hat)

        # origin
        prev_sample = denoised + z * sigma_hat

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return AnimateLCMSVDStochasticIterativeSchedulerOutput(prev_sample=prev_sample)

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(
            device=original_samples.device, dtype=original_samples.dtype
        )
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(
                original_samples.device, dtype=torch.float32
            )
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps