Spaces:
Running
Running
File size: 6,097 Bytes
98ced8b 968f4bc 98ced8b 968f4bc 98ced8b 968f4bc 351c0ef 968f4bc 98ced8b 053730f 98ced8b 3a7ead3 351c0ef 8382f82 98ced8b 8382f82 968f4bc 98ced8b 351c0ef 65321e4 351c0ef 65321e4 351c0ef 65321e4 351c0ef 65321e4 351c0ef 65321e4 351c0ef 053730f 159baa9 98ced8b 3a7ead3 98ced8b 8382f82 98ced8b 3a7ead3 98ced8b 0cde3e9 98ced8b 968f4bc 98ced8b 159baa9 968f4bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import evaluate
import numpy as np
import streamlit as st
from datasets import load_dataset
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainerCallback,
TrainingArguments,
)
from transformers.trainer_callback import TrainerControl, TrainerState
import wandb
class StreamlitProgressbarCallback(TrainerCallback):
"""
StreamlitProgressbarCallback is a custom callback for the Hugging Face Trainer
that integrates a progress bar into a Streamlit application. This class updates
the progress bar at each training step, providing real-time feedback on the
training process within the Streamlit interface.
Attributes:
progress_bar (streamlit.delta_generator.DeltaGenerator): A Streamlit progress
bar object initialized to 0 with the text "Training".
Methods:
on_step_begin(args, state, control, **kwargs):
Updates the progress bar at the beginning of each training step. The progress
is calculated as the percentage of completed steps out of the total steps.
The progress bar text is updated to show the current step and the total steps.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.progress_bar = st.progress(0, text="Training")
def on_step_begin(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
super().on_step_begin(args, state, control, **kwargs)
self.progress_bar.progress(
(state.global_step * 100 // state.max_steps) + 1,
text=f"Training {state.global_step} / {state.max_steps}",
)
def train_binary_classifier(
project_name: str,
entity_name: str,
run_name: str,
dataset_repo: str = "geekyrakshit/prompt-injection-dataset",
model_name: str = "distilbert/distilbert-base-uncased",
prompt_column_name: str = "prompt",
id2label: dict[int, str] = {0: "SAFE", 1: "INJECTION"},
label2id: dict[str, int] = {"SAFE": 0, "INJECTION": 1},
learning_rate: float = 1e-5,
batch_size: int = 16,
num_epochs: int = 2,
weight_decay: float = 0.01,
save_steps: int = 1000,
streamlit_mode: bool = False,
):
"""
Trains a binary classifier using a specified dataset and model architecture.
This function sets up and trains a binary sequence classification model using
the Hugging Face Transformers library. It integrates with Weights & Biases for
experiment tracking and optionally displays a progress bar in a Streamlit app.
Args:
project_name (str): The name of the Weights & Biases project.
entity_name (str): The Weights & Biases entity (user or team).
run_name (str): The name of the Weights & Biases run.
dataset_repo (str, optional): The Hugging Face dataset repository to load.
model_name (str, optional): The pre-trained model to use.
prompt_column_name (str, optional): The column name in the dataset containing
the text prompts.
id2label (dict[int, str], optional): Mapping from label IDs to label names.
label2id (dict[str, int], optional): Mapping from label names to label IDs.
learning_rate (float, optional): The learning rate for training.
batch_size (int, optional): The batch size for training and evaluation.
num_epochs (int, optional): The number of training epochs.
weight_decay (float, optional): The weight decay for the optimizer.
save_steps (int, optional): The number of steps between model checkpoints.
streamlit_mode (bool, optional): If True, integrates with Streamlit to display
a progress bar.
Returns:
dict: The output of the training process, including metrics and model state.
Raises:
Exception: If an error occurs during training, the exception is raised after
ensuring Weights & Biases run is finished.
"""
wandb.init(project=project_name, entity=entity_name, name=run_name)
if streamlit_mode:
st.markdown(
f"Explore your training logs on [Weights & Biases]({wandb.run.url})"
)
dataset = load_dataset(dataset_repo)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenized_datasets = dataset.map(
lambda examples: tokenizer(examples[prompt_column_name], truncation=True),
batched=True,
)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
accuracy = evaluate.load("accuracy")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return accuracy.compute(predictions=predictions, references=labels)
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=2,
id2label=id2label,
label2id=label2id,
)
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir="binary-classifier",
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=num_epochs,
weight_decay=weight_decay,
eval_strategy="epoch",
save_strategy="steps",
save_steps=save_steps,
load_best_model_at_end=True,
push_to_hub=False,
report_to="wandb",
logging_strategy="steps",
logging_steps=1,
),
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
processing_class=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
callbacks=[StreamlitProgressbarCallback()] if streamlit_mode else [],
)
try:
training_output = trainer.train()
except Exception as e:
wandb.finish()
raise e
wandb.finish()
return training_output
|