File size: 4,725 Bytes
98ced8b
 
968f4bc
98ced8b
 
 
 
 
 
 
 
968f4bc
5e33295
8647e3b
98ced8b
 
 
 
 
053730f
98ced8b
 
3a7ead3
351c0ef
 
8382f82
98ced8b
 
 
8382f82
968f4bc
98ced8b
351c0ef
 
 
 
 
 
 
 
 
 
 
 
65321e4
351c0ef
65321e4
351c0ef
 
65321e4
351c0ef
65321e4
 
351c0ef
 
65321e4
351c0ef
 
 
 
 
 
 
 
780c9f0
 
 
 
 
 
159baa9
 
 
 
98ced8b
 
 
3a7ead3
 
 
 
98ced8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8382f82
 
98ced8b
3a7ead3
98ced8b
0cde3e9
 
98ced8b
 
 
 
 
 
968f4bc
98ced8b
159baa9
 
 
 
 
968f4bc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import evaluate
import numpy as np
import streamlit as st
from datasets import load_dataset
from transformers import (
    AutoModelForSequenceClassification,
    AutoTokenizer,
    DataCollatorWithPadding,
    Trainer,
    TrainingArguments,
)

import wandb
from guardrails_genie.utils import StreamlitProgressbarCallback


def train_binary_classifier(
    project_name: str,
    entity_name: str,
    run_name: str,
    dataset_repo: str = "geekyrakshit/prompt-injection-dataset",
    model_name: str = "distilbert/distilbert-base-uncased",
    prompt_column_name: str = "prompt",
    id2label: dict[int, str] = {0: "SAFE", 1: "INJECTION"},
    label2id: dict[str, int] = {"SAFE": 0, "INJECTION": 1},
    learning_rate: float = 1e-5,
    batch_size: int = 16,
    num_epochs: int = 2,
    weight_decay: float = 0.01,
    save_steps: int = 1000,
    streamlit_mode: bool = False,
):
    """
    Trains a binary classifier using a specified dataset and model architecture.

    This function sets up and trains a binary sequence classification model using
    the Hugging Face Transformers library. It integrates with Weights & Biases for
    experiment tracking and optionally displays a progress bar in a Streamlit app.

    Args:
        project_name (str): The name of the Weights & Biases project.
        entity_name (str): The Weights & Biases entity (user or team).
        run_name (str): The name of the Weights & Biases run.
        dataset_repo (str, optional): The Hugging Face dataset repository to load.
        model_name (str, optional): The pre-trained model to use.
        prompt_column_name (str, optional): The column name in the dataset containing
            the text prompts.
        id2label (dict[int, str], optional): Mapping from label IDs to label names.
        label2id (dict[str, int], optional): Mapping from label names to label IDs.
        learning_rate (float, optional): The learning rate for training.
        batch_size (int, optional): The batch size for training and evaluation.
        num_epochs (int, optional): The number of training epochs.
        weight_decay (float, optional): The weight decay for the optimizer.
        save_steps (int, optional): The number of steps between model checkpoints.
        streamlit_mode (bool, optional): If True, integrates with Streamlit to display
            a progress bar.

    Returns:
        dict: The output of the training process, including metrics and model state.

    Raises:
        Exception: If an error occurs during training, the exception is raised after
            ensuring Weights & Biases run is finished.
    """
    wandb.init(
        project=project_name,
        entity=entity_name,
        name=run_name,
        job_type="train-binary-classifier",
    )
    if streamlit_mode:
        st.markdown(
            f"Explore your training logs on [Weights & Biases]({wandb.run.url})"
        )
    dataset = load_dataset(dataset_repo)
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    tokenized_datasets = dataset.map(
        lambda examples: tokenizer(examples[prompt_column_name], truncation=True),
        batched=True,
    )
    data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
    accuracy = evaluate.load("accuracy")

    def compute_metrics(eval_pred):
        predictions, labels = eval_pred
        predictions = np.argmax(predictions, axis=1)
        return accuracy.compute(predictions=predictions, references=labels)

    model = AutoModelForSequenceClassification.from_pretrained(
        model_name,
        num_labels=2,
        id2label=id2label,
        label2id=label2id,
    )

    trainer = Trainer(
        model=model,
        args=TrainingArguments(
            output_dir="binary-classifier",
            learning_rate=learning_rate,
            per_device_train_batch_size=batch_size,
            per_device_eval_batch_size=batch_size,
            num_train_epochs=num_epochs,
            weight_decay=weight_decay,
            eval_strategy="epoch",
            save_strategy="steps",
            save_steps=save_steps,
            load_best_model_at_end=True,
            push_to_hub=False,
            report_to="wandb",
            logging_strategy="steps",
            logging_steps=1,
        ),
        train_dataset=tokenized_datasets["train"],
        eval_dataset=tokenized_datasets["test"],
        processing_class=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics,
        callbacks=[StreamlitProgressbarCallback()] if streamlit_mode else [],
    )
    try:
        training_output = trainer.train()
    except Exception as e:
        wandb.finish()
        raise e
    wandb.finish()
    return training_output