Spaces:
Running
Running
File size: 4,725 Bytes
98ced8b 968f4bc 98ced8b 968f4bc 5e33295 8647e3b 98ced8b 053730f 98ced8b 3a7ead3 351c0ef 8382f82 98ced8b 8382f82 968f4bc 98ced8b 351c0ef 65321e4 351c0ef 65321e4 351c0ef 65321e4 351c0ef 65321e4 351c0ef 65321e4 351c0ef 780c9f0 159baa9 98ced8b 3a7ead3 98ced8b 8382f82 98ced8b 3a7ead3 98ced8b 0cde3e9 98ced8b 968f4bc 98ced8b 159baa9 968f4bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import evaluate
import numpy as np
import streamlit as st
from datasets import load_dataset
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainingArguments,
)
import wandb
from guardrails_genie.utils import StreamlitProgressbarCallback
def train_binary_classifier(
project_name: str,
entity_name: str,
run_name: str,
dataset_repo: str = "geekyrakshit/prompt-injection-dataset",
model_name: str = "distilbert/distilbert-base-uncased",
prompt_column_name: str = "prompt",
id2label: dict[int, str] = {0: "SAFE", 1: "INJECTION"},
label2id: dict[str, int] = {"SAFE": 0, "INJECTION": 1},
learning_rate: float = 1e-5,
batch_size: int = 16,
num_epochs: int = 2,
weight_decay: float = 0.01,
save_steps: int = 1000,
streamlit_mode: bool = False,
):
"""
Trains a binary classifier using a specified dataset and model architecture.
This function sets up and trains a binary sequence classification model using
the Hugging Face Transformers library. It integrates with Weights & Biases for
experiment tracking and optionally displays a progress bar in a Streamlit app.
Args:
project_name (str): The name of the Weights & Biases project.
entity_name (str): The Weights & Biases entity (user or team).
run_name (str): The name of the Weights & Biases run.
dataset_repo (str, optional): The Hugging Face dataset repository to load.
model_name (str, optional): The pre-trained model to use.
prompt_column_name (str, optional): The column name in the dataset containing
the text prompts.
id2label (dict[int, str], optional): Mapping from label IDs to label names.
label2id (dict[str, int], optional): Mapping from label names to label IDs.
learning_rate (float, optional): The learning rate for training.
batch_size (int, optional): The batch size for training and evaluation.
num_epochs (int, optional): The number of training epochs.
weight_decay (float, optional): The weight decay for the optimizer.
save_steps (int, optional): The number of steps between model checkpoints.
streamlit_mode (bool, optional): If True, integrates with Streamlit to display
a progress bar.
Returns:
dict: The output of the training process, including metrics and model state.
Raises:
Exception: If an error occurs during training, the exception is raised after
ensuring Weights & Biases run is finished.
"""
wandb.init(
project=project_name,
entity=entity_name,
name=run_name,
job_type="train-binary-classifier",
)
if streamlit_mode:
st.markdown(
f"Explore your training logs on [Weights & Biases]({wandb.run.url})"
)
dataset = load_dataset(dataset_repo)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenized_datasets = dataset.map(
lambda examples: tokenizer(examples[prompt_column_name], truncation=True),
batched=True,
)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
accuracy = evaluate.load("accuracy")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return accuracy.compute(predictions=predictions, references=labels)
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=2,
id2label=id2label,
label2id=label2id,
)
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir="binary-classifier",
learning_rate=learning_rate,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=num_epochs,
weight_decay=weight_decay,
eval_strategy="epoch",
save_strategy="steps",
save_steps=save_steps,
load_best_model_at_end=True,
push_to_hub=False,
report_to="wandb",
logging_strategy="steps",
logging_steps=1,
),
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
processing_class=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
callbacks=[StreamlitProgressbarCallback()] if streamlit_mode else [],
)
try:
training_output = trainer.train()
except Exception as e:
wandb.finish()
raise e
wandb.finish()
return training_output
|