Spaces:
Running
Running
File size: 2,482 Bytes
2633ee9 46466a5 7e16d4f 46466a5 7e16d4f 1f626ee 2633ee9 1f626ee 2633ee9 1f626ee 2633ee9 46466a5 7e16d4f 46466a5 7e16d4f 46466a5 7e16d4f 46466a5 7e16d4f 46466a5 7e16d4f 46466a5 7e16d4f 46466a5 7e16d4f 3caf047 46466a5 3caf047 46466a5 3caf047 7e16d4f 46466a5 7e16d4f 3caf047 46466a5 7e16d4f 46466a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
from typing import Optional, Union
import regex as re
import weave
from pydantic import BaseModel
class RegexResult(BaseModel):
passed: bool
matched_patterns: dict[str, list[str]]
failed_patterns: list[str]
class RegexModel(weave.Model):
"""
Initialize RegexModel with a dictionary of patterns.
Args:
patterns (Dict[str, str]): Dictionary where key is pattern name and value is regex pattern.
"""
patterns: Optional[Union[dict[str, str], dict[str, list[str]]]] = None
def __init__(
self, patterns: Optional[Union[dict[str, str], dict[str, list[str]]]] = None
) -> None:
super().__init__(patterns=patterns)
normalized_patterns = {}
for k, v in patterns.items():
normalized_patterns[k] = v if isinstance(v, list) else [v]
self._compiled_patterns = {
name: [re.compile(p) for p in pattern]
for name, pattern in normalized_patterns.items()
}
@weave.op()
def check(self, text: str) -> RegexResult:
"""
Check text against all patterns and return detailed results.
Args:
text: Input text to check against patterns
Returns:
RegexResult containing pass/fail status and details about matches
"""
matched_patterns = {}
failed_patterns = []
for pattern_name, pats in self._compiled_patterns.items():
matches = []
for pattern in pats:
for match in pattern.finditer(text):
if match.groups():
# If there are capture groups, join them with a separator
matches.append(
"-".join(str(g) for g in match.groups() if g is not None)
)
else:
# If no capture groups, use the full match
matches.append(match.group(0))
if matches:
matched_patterns[pattern_name] = matches
else:
failed_patterns.append(pattern_name)
return RegexResult(
matched_patterns=matched_patterns,
failed_patterns=failed_patterns,
passed=len(matched_patterns) == 0,
)
@weave.op()
def predict(self, text: str) -> RegexResult:
"""
Alias for check() to maintain consistency with other models.
"""
return self.check(text)
|