File size: 9,565 Bytes
2890711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch

from ..modules.attention import *
from ..modules.diffusionmodules.util import AlphaBlender, linear, timestep_embedding


class TimeMixSequential(nn.Sequential):
    def forward(self, x, context=None, timesteps=None):
        for layer in self:
            x = layer(x, context, timesteps)

        return x


class VideoTransformerBlock(nn.Module):
    ATTENTION_MODES = {
        "softmax": CrossAttention,
        "softmax-xformers": MemoryEfficientCrossAttention,
    }

    def __init__(
        self,
        dim,
        n_heads,
        d_head,
        dropout=0.0,
        context_dim=None,
        gated_ff=True,
        checkpoint=True,
        timesteps=None,
        ff_in=False,
        inner_dim=None,
        attn_mode="softmax",
        disable_self_attn=False,
        disable_temporal_crossattention=False,
        switch_temporal_ca_to_sa=False,
    ):
        super().__init__()

        attn_cls = self.ATTENTION_MODES[attn_mode]

        self.ff_in = ff_in or inner_dim is not None
        if inner_dim is None:
            inner_dim = dim

        assert int(n_heads * d_head) == inner_dim

        self.is_res = inner_dim == dim

        if self.ff_in:
            self.norm_in = nn.LayerNorm(dim)
            self.ff_in = FeedForward(
                dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff
            )

        self.timesteps = timesteps
        self.disable_self_attn = disable_self_attn
        if self.disable_self_attn:
            self.attn1 = attn_cls(
                query_dim=inner_dim,
                heads=n_heads,
                dim_head=d_head,
                context_dim=context_dim,
                dropout=dropout,
            )  # is a cross-attention
        else:
            self.attn1 = attn_cls(
                query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout
            )  # is a self-attention

        self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff)

        if disable_temporal_crossattention:
            if switch_temporal_ca_to_sa:
                raise ValueError
            else:
                self.attn2 = None
        else:
            self.norm2 = nn.LayerNorm(inner_dim)
            if switch_temporal_ca_to_sa:
                self.attn2 = attn_cls(
                    query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout
                )  # is a self-attention
            else:
                self.attn2 = attn_cls(
                    query_dim=inner_dim,
                    context_dim=context_dim,
                    heads=n_heads,
                    dim_head=d_head,
                    dropout=dropout,
                )  # is self-attn if context is none

        self.norm1 = nn.LayerNorm(inner_dim)
        self.norm3 = nn.LayerNorm(inner_dim)
        self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa

        self.checkpoint = checkpoint
        '''
        if self.checkpoint:
            print(f"{self.__class__.__name__} is using checkpointing")
        '''

    def forward(
        self, x: torch.Tensor, context: torch.Tensor = None, timesteps: int = None
    ) -> torch.Tensor:
        if self.checkpoint:
            return checkpoint(self._forward, x, context, timesteps)
        else:
            return self._forward(x, context, timesteps=timesteps)

    def _forward(self, x, context=None, timesteps=None):
        assert self.timesteps or timesteps
        assert not (self.timesteps and timesteps) or self.timesteps == timesteps
        timesteps = self.timesteps or timesteps
        B, S, C = x.shape
        x = rearrange(x, "(b t) s c -> (b s) t c", t=timesteps)

        if self.ff_in:
            x_skip = x
            x = self.ff_in(self.norm_in(x))
            if self.is_res:
                x += x_skip

        if self.disable_self_attn:
            x = self.attn1(self.norm1(x), context=context) + x
        else:
            x = self.attn1(self.norm1(x)) + x

        if self.attn2 is not None:
            if self.switch_temporal_ca_to_sa:
                x = self.attn2(self.norm2(x)) + x
            else:
                x = self.attn2(self.norm2(x), context=context) + x
        x_skip = x
        x = self.ff(self.norm3(x))
        if self.is_res:
            x += x_skip

        x = rearrange(
            x, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
        )
        return x

    def get_last_layer(self):
        return self.ff.net[-1].weight


class SpatialVideoTransformer(SpatialTransformer):
    def __init__(
        self,
        in_channels,
        n_heads,
        d_head,
        depth=1,
        dropout=0.0,
        use_linear=False,
        context_dim=None,
        use_spatial_context=False,
        timesteps=None,
        merge_strategy: str = "fixed",
        merge_factor: float = 0.5,
        time_context_dim=None,
        ff_in=False,
        checkpoint=False,
        time_depth=1,
        attn_mode="softmax",
        disable_self_attn=False,
        disable_temporal_crossattention=False,
        max_time_embed_period: int = 10000,
    ):
        super().__init__(
            in_channels,
            n_heads,
            d_head,
            depth=depth,
            dropout=dropout,
            attn_type=attn_mode,
            use_checkpoint=checkpoint,
            context_dim=context_dim,
            use_linear=use_linear,
            disable_self_attn=disable_self_attn,
        )
        self.time_depth = time_depth
        self.depth = depth
        self.max_time_embed_period = max_time_embed_period

        time_mix_d_head = d_head
        n_time_mix_heads = n_heads

        time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)

        inner_dim = n_heads * d_head
        if use_spatial_context:
            time_context_dim = context_dim

        self.time_stack = nn.ModuleList(
            [
                VideoTransformerBlock(
                    inner_dim,
                    n_time_mix_heads,
                    time_mix_d_head,
                    dropout=dropout,
                    context_dim=time_context_dim,
                    timesteps=timesteps,
                    checkpoint=checkpoint,
                    ff_in=ff_in,
                    inner_dim=time_mix_inner_dim,
                    attn_mode=attn_mode,
                    disable_self_attn=disable_self_attn,
                    disable_temporal_crossattention=disable_temporal_crossattention,
                )
                for _ in range(self.depth)
            ]
        )

        assert len(self.time_stack) == len(self.transformer_blocks)

        self.use_spatial_context = use_spatial_context
        self.in_channels = in_channels

        time_embed_dim = self.in_channels * 4
        self.time_pos_embed = nn.Sequential(
            linear(self.in_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, self.in_channels),
        )

        self.time_mixer = AlphaBlender(
            alpha=merge_factor, merge_strategy=merge_strategy
        )

    def forward(
        self,
        x: torch.Tensor,
        context: Optional[torch.Tensor] = None,
        time_context: Optional[torch.Tensor] = None,
        timesteps: Optional[int] = None,
        image_only_indicator: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        _, _, h, w = x.shape
        x_in = x
        spatial_context = None
        if exists(context):
            spatial_context = context

        if self.use_spatial_context:
            assert (
                context.ndim == 3
            ), f"n dims of spatial context should be 3 but are {context.ndim}"

            time_context = context
            time_context_first_timestep = time_context[::timesteps]
            time_context = repeat(
                time_context_first_timestep, "b ... -> (b n) ...", n=h * w
            )
        elif time_context is not None and not self.use_spatial_context:
            time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
            if time_context.ndim == 2:
                time_context = rearrange(time_context, "b c -> b 1 c")

        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        if self.use_linear:
            x = self.proj_in(x)

        num_frames = torch.arange(timesteps, device=x.device)
        num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
        num_frames = rearrange(num_frames, "b t -> (b t)")
        t_emb = timestep_embedding(
            num_frames,
            self.in_channels,
            repeat_only=False,
            max_period=self.max_time_embed_period,
        )
        emb = self.time_pos_embed(t_emb)
        emb = emb[:, None, :]

        for it_, (block, mix_block) in enumerate(
            zip(self.transformer_blocks, self.time_stack)
        ):
            x = block(
                x,
                context=spatial_context,
            )

            x_mix = x
            x_mix = x_mix + emb

            x_mix = mix_block(x_mix, context=time_context, timesteps=timesteps)
            x = self.time_mixer(
                x_spatial=x,
                x_temporal=x_mix,
                image_only_indicator=image_only_indicator,
            )
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        if not self.use_linear:
            x = self.proj_out(x)
        out = x + x_in
        return out