File size: 5,712 Bytes
2890711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import plotly.express as px
import plotly.graph_objects as go

def vis_camera(RT_list, rescale_T=1):
    fig = go.Figure()
    showticklabels = True
    visible = True
    scene_bounds = 2
    base_radius = 2.5
    zoom_scale = 1.5
    fov_deg = 50.0
    
    edges = [(0, 1), (0, 2), (0, 3), (1, 2), (2, 3), (3, 1), (3, 4)] 
    
    colors = px.colors.qualitative.Plotly
    
    cone_list = []
    n = len(RT_list)
    for i, RT in enumerate(RT_list):
        R = RT[:,:3]
        T = RT[:,-1]/rescale_T
        cone = calc_cam_cone_pts_3d(R, T, fov_deg)
        cone_list.append((cone, (i*1/n, "green"), f"view_{i}"))

    
    for (cone, clr, legend) in cone_list:
        for (i, edge) in enumerate(edges):
            (x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
            (y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
            (z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
            fig.add_trace(go.Scatter3d(
                x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
                line=dict(color=clr, width=3),
                name=legend, showlegend=(i == 0))) 
    fig.update_layout(
                    height=500,
                    autosize=True,
                    # hovermode=False,
                    margin=go.layout.Margin(l=0, r=0, b=0, t=0),
                    
                    showlegend=True,
                    legend=dict(
                        yanchor='bottom',
                        y=0.01,
                        xanchor='right',
                        x=0.99,
                    ),
                    scene=dict(
                        aspectmode='manual',
                        aspectratio=dict(x=1, y=1, z=1.0),
                        camera=dict(
                            center=dict(x=0.0, y=0.0, z=0.0),
                            up=dict(x=0.0, y=-1.0, z=0.0),
                            eye=dict(x=scene_bounds/2, y=-scene_bounds/2, z=-scene_bounds/2),
                            ),

                        xaxis=dict(
                            range=[-scene_bounds, scene_bounds],
                            showticklabels=showticklabels,
                            visible=visible,
                        ),
                            
                        
                        yaxis=dict(
                            range=[-scene_bounds, scene_bounds],
                            showticklabels=showticklabels,
                            visible=visible,
                        ),
                            
                        
                        zaxis=dict(
                            range=[-scene_bounds, scene_bounds],
                            showticklabels=showticklabels,
                            visible=visible,
                        )
                    ))
    return fig


def calc_cam_cone_pts_3d(R_W2C, T_W2C, fov_deg, scale=0.1, set_canonical=False, first_frame_RT=None):
    fov_rad = np.deg2rad(fov_deg)
    R_W2C_inv = np.linalg.inv(R_W2C)

    # Camera pose center:
    T = np.zeros_like(T_W2C) - T_W2C
    T = np.dot(R_W2C_inv, T)
    cam_x = T[0]
    cam_y = T[1]
    cam_z = T[2]
    if set_canonical:
        T = np.zeros_like(T_W2C)
        T = np.dot(first_frame_RT[:,:3], T) + first_frame_RT[:,-1]
        T = T - T_W2C 
        T = np.dot(R_W2C_inv, T)
        cam_x = T[0]
        cam_y = T[1]
        cam_z = T[2]

    # vertex
    corn1 = np.array([np.tan(fov_rad / 2.0), 0.5*np.tan(fov_rad / 2.0), 1.0]) *scale 
    corn2 = np.array([-np.tan(fov_rad / 2.0), 0.5*np.tan(fov_rad / 2.0), 1.0]) *scale
    corn3 = np.array([0, -0.25*np.tan(fov_rad / 2.0), 1.0]) *scale
    corn4 = np.array([0, -0.5*np.tan(fov_rad / 2.0), 1.0]) *scale

    corn1 = corn1 - T_W2C
    corn2 = corn2 - T_W2C
    corn3 = corn3 - T_W2C
    corn4 = corn4 - T_W2C
    
    corn1 = np.dot(R_W2C_inv, corn1)
    corn2 = np.dot(R_W2C_inv, corn2)
    corn3 = np.dot(R_W2C_inv, corn3) 
    corn4 = np.dot(R_W2C_inv, corn4) 

    # Now attach as offset to actual 3D camera position:
    corn_x1 = corn1[0]
    corn_y1 = corn1[1]
    corn_z1 = corn1[2]
    
    corn_x2 = corn2[0]
    corn_y2 = corn2[1]
    corn_z2 = corn2[2]
    
    corn_x3 = corn3[0]
    corn_y3 = corn3[1]
    corn_z3 = corn3[2]
    
    corn_x4 = corn4[0]
    corn_y4 = corn4[1]
    corn_z4 = corn4[2]
            

    xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4, ]
    ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4, ]
    zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4, ]

    return np.array([xs, ys, zs]).T



    # T_base = [
    #             [1.,0.,0.],             ## W2C  x 的正方向: 相机朝左  left
    #             [-1.,0.,0.],            ## W2C  x 的负方向: 相机朝右  right
    #             [0., 1., 0.],           ## W2C  y 的正方向: 相机朝上  up     
    #             [0.,-1.,0.],            ## W2C  y 的负方向: 相机朝下  down
    #             [0.,0.,1.],             ## W2C  z 的正方向: 相机往前  zoom out
    #             [0.,0.,-1.],            ## W2C  z 的负方向: 相机往前  zoom in
    #         ]   
    # radius = 1
    # n = 16
    # # step = 
    # look_at = np.array([0, 0, 0.8]).reshape(3,1)
    # # look_at = np.array([0, 0, 0.2]).reshape(3,1)

    # T_list = []
    # base_R = np.array([[1., 0., 0.],
    #                 [0., 1., 0.],
    #                 [0., 0., 1.]])
    # res = [] 
    # res_forsave = []
    # T_range = 1.8



    # for i in range(0, 16):
    #     # theta = (1)*np.pi*i/n

    #     R = base_R[:,:3]
    #     T = np.array([0.,0.,1.]).reshape(3,1) * (i/n)*2
    #     RT = np.concatenate([R,T], axis=1)
    #     res.append(RT)
        
    # fig = vis_camera(res)