File size: 8,271 Bytes
557fb53
3a0f0a5
 
 
 
 
 
 
557fb53
3a0f0a5
 
557fb53
 
 
 
 
3b31903
3a0f0a5
3b31903
 
 
 
 
3a0f0a5
3b31903
3a0f0a5
 
 
 
 
 
 
 
557fb53
3b31903
3a0f0a5
 
 
 
 
 
3b31903
 
 
 
3a0f0a5
 
 
 
 
 
 
557fb53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b31903
557fb53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a0f0a5
 
 
 
 
3b31903
 
 
3a0f0a5
 
 
557fb53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a0f0a5
 
 
 
3b31903
3a0f0a5
3b31903
3a0f0a5
3b31903
 
3a0f0a5
3b31903
 
 
 
 
 
 
3a0f0a5
 
3b31903
3a0f0a5
 
 
 
3b31903
3a0f0a5
 
 
 
 
 
 
3b31903
 
 
 
3a0f0a5
 
 
3b31903
3a0f0a5
 
3b31903
3a0f0a5
3b31903
 
 
 
 
 
 
 
 
557fb53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import pytorch_lightning as pl
from sklearn.base import ClassifierMixin, BaseEstimator
import pandas as pd
from torch import nn
import torch
from typing import Iterator
import numpy as np
import json
from torch.utils.data import random_split
from tqdm import tqdm
import librosa
from joblib import dump, load
from os import path
import os

from preprocessing.dataset import get_music4dance_examples

DANCE_INFO_FILE = "data/dance_info.csv"
dance_info_df = pd.read_csv(
    DANCE_INFO_FILE,
    converters={"tempoRange": lambda s: json.loads(s.replace("'", '"'))},
)


class DanceTreeClassifier(BaseEstimator, ClassifierMixin):
    """
    Trains a series of binary classifiers to classify each dance when a song falls into its bpm range.

    Features:
        - Spectrogram
        - BPM
    """

    def __init__(self, device="cpu", lr=1e-4, verbose=True) -> None:
        self.device = device
        self.verbose = verbose
        self.lr = lr
        self.classifiers = {}
        self.optimizers = {}
        self.criterion = nn.BCELoss()

    def get_valid_dances_from_bpm(self, bpm: float) -> list[str]:
        mask = dance_info_df["tempoRange"].apply(
            lambda interval: interval["min"] <= bpm <= interval["max"]
        )
        return list(dance_info_df["id"][mask])

    def fit(self, x, y):
        """
        x: (specs, bpms). The first element is the spectrogram, second element is the bpm. spec shape should be (channel, freq_bins, sr * time)
        y: (batch_size, n_classes)
        """
        epoch_loss = 0
        pred_count = 0
        data_loader = zip(x, y)
        if self.verbose:
            data_loader = tqdm(data_loader, total=len(y))
        for (spec, bpm), label in data_loader:
            # find all models that are in the bpm range
            matching_dances = self.get_valid_dances_from_bpm(bpm)
            spec = torch.from_numpy(spec).to(self.device)
            for dance in matching_dances:
                if dance not in self.classifiers or dance not in self.optimizers:
                    classifier = DanceCNN().to(self.device)
                    self.classifiers[dance] = classifier
                    self.optimizers[dance] = torch.optim.Adam(
                        classifier.parameters(), lr=self.lr
                    )
            models = [
                (dance, model, self.optimizers[dance])
                for dance, model in self.classifiers.items()
                if dance in matching_dances
            ]
            for model_i, (dance, model, opt) in enumerate(models, start=1):
                opt.zero_grad()
                output = model(spec)
                target = torch.tensor([float(dance == label)], device=self.device)
                loss = self.criterion(output, target)
                epoch_loss += loss.item()
                pred_count += 1
                loss.backward()
                if self.verbose:
                    data_loader.set_description(
                        f"model: {model_i}/{len(models)}, loss: {loss.item()}"
                    )
                opt.step()

    def predict(self, x) -> list[str]:
        results = []
        for spec, bpm in zip(*x):
            matching_dances = self.get_valid_dances_from_bpm(bpm)
            dance_i = torch.tensor(
                [self.classifiers[dance](spec) for dance in matching_dances]
            ).argmax()
            results.append(matching_dances[dance_i])
        return results

    def save(self, folder: str):
        # Create a folder
        classifier_path = path.join(folder, "classifier")
        os.makedirs(classifier_path, exist_ok=True)

        # Swap out model reference
        classifiers = self.classifiers
        optimizers = self.optimizers
        criterion = self.criterion

        self.classifiers = None
        self.optimizers = None
        self.criterion = None

        # Save the Pth models
        for dance, classifier in classifiers.items():
            torch.save(
                classifier.state_dict(), path.join(classifier_path, dance + ".pth")
            )

        # Save the Sklearn model
        dump(path.join(folder, "sklearn.joblib"))

        # Reload values
        self.classifiers = classifiers
        self.optimizers = optimizers
        self.criterion = criterion

    @staticmethod
    def from_config(folder: str, device="cpu") -> "DanceTreeClassifier":
        # load in weights
        model_paths = (
            p for p in os.listdir(path.join(folder, "classifier")) if p.endswith("pth")
        )
        classifiers = {}
        for model_path in model_paths:
            dance = model_path.split(".")[0]
            model = DanceCNN().to(device)
            model.load_state_dict(
                torch.load(path.join(folder, "classifier", model_path))
            )
            classifiers[dance] = model
        wrapper = load(path.join(folder, "sklearn.joblib"))
        wrapper.classifiers = classifiers
        return wrapper


class DanceCNN(nn.Module):
    def __init__(self, sr=16000, freq_bins=20, duration=6, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        kernel_size = (3, 9)
        self.cnn = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=kernel_size),
            nn.ReLU(),
            nn.MaxPool2d((2, 10)),
            nn.Conv2d(16, 32, kernel_size=kernel_size),
            nn.ReLU(),
            nn.MaxPool2d((2, 10)),
            nn.Conv2d(32, 32, kernel_size=kernel_size),
            nn.ReLU(),
            nn.MaxPool2d((2, 10)),
            nn.Conv2d(32, 16, kernel_size=kernel_size),
            nn.ReLU(),
            nn.MaxPool2d((2, 10)),
        )

        embedding_dimension = 16 * 6 * 8
        self.classifier = nn.Sequential(
            nn.Linear(embedding_dimension, 200),
            nn.ReLU(),
            nn.Linear(200, 1),
            nn.Sigmoid(),
        )

    def forward(self, x):
        x = self.cnn(x)
        x = x.flatten() if len(x.shape) == 3 else x.flatten(1)
        return self.classifier(x)


def features_from_path(
    paths: list[str], audio_window_duration=6, audio_duration=30, resample_freq=16000
) -> Iterator[tuple[np.array, float]]:
    """
    Loads audio and bpm from an audio path.
    """

    for path in paths:
        waveform, sr = librosa.load(path, mono=True, sr=resample_freq)
        num_frames = audio_window_duration * sr
        tempo, _ = librosa.beat.beat_track(y=waveform, sr=sr)
        spec = librosa.feature.melspectrogram(y=waveform, sr=sr)
        spec_normalized = (spec - spec.mean()) / spec.std()
        spec_padded = librosa.util.fix_length(
            spec_normalized, size=sr * audio_duration, axis=1
        )
        batched_spec = np.expand_dims(spec_padded, axis=0)
        for i in range(audio_duration // audio_window_duration):
            spec_window = batched_spec[:, :, i * num_frames : (i + 1) * num_frames]
            yield (spec_window, tempo)


def train_decision_tree(config: dict):
    TARGET_CLASSES = config["global"]["dance_ids"]
    DEVICE = config["global"]["device"]
    SEED = config["global"]["seed"]
    SEED = config["global"]["seed"]
    EPOCHS = config["trainer"]["min_epochs"]
    song_data_path = config["data_module"]["song_data_path"]
    song_audio_path = config["data_module"]["song_audio_path"]
    pl.seed_everything(SEED, workers=True)

    df = pd.read_csv(song_data_path)
    x, y = get_music4dance_examples(
        df, song_audio_path, class_list=TARGET_CLASSES, multi_label=True
    )
    # Convert y back to string classes
    y = np.array(TARGET_CLASSES)[y.argmax(-1)]
    train_i, test_i = random_split(
        np.arange(len(x)), [0.1, 0.9]
    )  # Temporary to test efficacy
    train_paths, train_y = x[train_i], y[train_i]
    model = DanceTreeClassifier(device=DEVICE)
    for epoch in tqdm(range(1, EPOCHS + 1)):
        # Shuffle the data
        i = np.arange(len(train_paths))
        np.random.shuffle(i)
        train_paths = train_paths[i]
        train_y = train_y[i]
        train_x = features_from_path(train_paths)
        model.fit(train_x, train_y)

    # evaluate the model
    preds = model.predict(x[test_i])
    accuracy = (preds == y[test_i]).mean()
    print(f"{accuracy=}")
    model.save("models/weights/decision_tree")