File size: 6,460 Bytes
4b8361a
c914273
 
 
4b8361a
 
 
 
 
 
 
7b37b0e
c914273
7b37b0e
4b8361a
c914273
 
 
 
 
 
 
7b37b0e
 
 
 
 
 
 
c914273
 
 
 
 
7b37b0e
c914273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b8361a
c914273
7b37b0e
c914273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b8361a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.nn as nn
import torch.nn.functional as F

import pytorch_lightning as pl
import numpy as np
import torchaudio
import yaml
from .utils import calculate_metrics
from preprocessing.pipelines import AudioPipeline

# Architecture based on: https://github.com/minzwon/sota-music-tagging-models/blob/36aa13b7205ff156cf4dcab60fd69957da453151/training/model.py

class ResidualDancer(nn.Module):
    def __init__(self,n_channels=128, n_classes=50):
        super().__init__()

        # Spectrogram
        self.spec_bn = nn.BatchNorm2d(1)

        # CNN
        self.res_layers = nn.Sequential(
            ResBlock(1, n_channels, stride=2),
            ResBlock(n_channels, n_channels, stride=2),
            ResBlock(n_channels, n_channels*2, stride=2),
            ResBlock(n_channels*2, n_channels*2, stride=2),
            ResBlock(n_channels*2, n_channels*2, stride=2),
            ResBlock(n_channels*2, n_channels*2, stride=2),
            ResBlock(n_channels*2, n_channels*4, stride=2)
        )

        # Dense
        self.dense1 = nn.Linear(n_channels*4, n_channels*4)
        self.bn = nn.BatchNorm1d(n_channels*4)
        self.dense2 = nn.Linear(n_channels*4, n_classes)
        self.dropout = nn.Dropout(0.3)

    def forward(self, x):
        x = self.spec_bn(x)

        # CNN
        x = self.res_layers(x)
        x = x.squeeze(2)

        # Global Max Pooling
        if x.size(-1) != 1:
            x = nn.MaxPool1d(x.size(-1))(x)
        x = x.squeeze(2)

        # Dense
        x = self.dense1(x)
        x = self.bn(x)
        x = F.relu(x)
        x = self.dropout(x)
        x = self.dense2(x)
        x = nn.Sigmoid()(x)

        return x
        

class ResBlock(nn.Module):
    def __init__(self, input_channels, output_channels, shape=3, stride=2):
        super().__init__()
        # convolution
        self.conv_1 = nn.Conv2d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
        self.bn_1 = nn.BatchNorm2d(output_channels)
        self.conv_2 = nn.Conv2d(output_channels, output_channels, shape, padding=shape//2)
        self.bn_2 = nn.BatchNorm2d(output_channels)

        # residual
        self.diff = False
        if (stride != 1) or (input_channels != output_channels):
            self.conv_3 = nn.Conv2d(input_channels, output_channels, shape, stride=stride, padding=shape//2)
            self.bn_3 = nn.BatchNorm2d(output_channels)
            self.diff = True
        self.relu = nn.ReLU()

    def forward(self, x):
        # convolution
        out = self.bn_2(self.conv_2(self.relu(self.bn_1(self.conv_1(x)))))

        # residual
        if self.diff:
            x = self.bn_3(self.conv_3(x))
        out = x + out
        out = self.relu(out)
        return out

class TrainingEnvironment(pl.LightningModule):

    def __init__(self, model: nn.Module, criterion: nn.Module, learning_rate=1e-4, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.model = model
        self.criterion = criterion
        self.learning_rate = learning_rate

    def training_step(self, batch: tuple[torch.Tensor, torch.TensorType], batch_index: int) -> torch.Tensor:
        features, labels = batch
        outputs = self.model(features)
        loss = self.criterion(outputs, labels)
        batch_metrics = calculate_metrics(outputs, labels)
        self.log_dict(batch_metrics)
        return loss

    def validation_step(self, batch:tuple[torch.Tensor, torch.TensorType], batch_index:int):
        x, y = batch
        preds = self.model(x)
        metrics = calculate_metrics(preds, y, prefix="val_")
        metrics["val_loss"] = self.criterion(preds, y)
        self.log_dict(metrics)

    def test_step(self, batch:tuple[torch.Tensor, torch.TensorType], batch_index:int):
        x, y = batch
        preds = self.model(x)
        self.log_dict(calculate_metrics(preds, y, prefix="test_"))
    
    def configure_optimizers(self):
        return torch.optim.Adam(self.model.parameters(), lr=self.learning_rate)
        

class DancePredictor:
    def __init__(
        self, 
        weight_path:str,
        labels:list[str],
        expected_duration=6, 
        threshold=0.5,
        resample_frequency=16000,
        device="cpu"):

        super().__init__()
        
        self.expected_duration = expected_duration
        self.threshold = threshold
        self.resample_frequency = resample_frequency
        self.audio_pipeline = AudioPipeline(input_freq=self.resample_frequency)
        self.labels = np.array(labels)
        self.device = device
        self.model = self.get_model(weight_path)

    
    def get_model(self, weight_path:str) -> nn.Module:
        weights = torch.load(weight_path, map_location=self.device)["state_dict"]
        model = ResidualDancer(n_classes=len(self.labels))
        for key in list(weights):
            weights[key.replace("model.", "")] = weights.pop(key)
        model.load_state_dict(weights)
        return model.to(self.device).eval()

    @classmethod
    def from_config(cls, config_path:str) -> "DancePredictor":
        with open(config_path, "r") as f:
            config = yaml.safe_load(f)
        return DancePredictor(**config)

    @torch.no_grad()
    def __call__(self, waveform: np.ndarray, sample_rate:int) -> dict[str,float]:
        min_sample_len = sample_rate * self.expected_duration
        if min_sample_len > len(waveform):
            raise Exception("You must record for at least 6 seconds")
        if len(waveform.shape) > 1 and waveform.shape[1] > 1:
            waveform = waveform.transpose(1,0)
            waveform = waveform.mean(axis=0, keepdims=True)
        else:
            waveform = np.expand_dims(waveform, 0)
        waveform = waveform[: ,:min_sample_len]
        waveform = torch.from_numpy(waveform.astype("int16"))
        waveform = torchaudio.functional.apply_codec(waveform,sample_rate, "wav", channels_first=True)

        waveform = torchaudio.functional.resample(waveform, sample_rate,self.resample_frequency)
        spectrogram = self.audio_pipeline(waveform)
        spectrogram = spectrogram.unsqueeze(0).to(self.device)

        results = self.model(spectrogram)
        results = results.squeeze(0).detach().cpu().numpy()
        result_mask = results > self.threshold
        probs = results[result_mask]
        dances = self.labels[result_mask]
        
        return {dance:float(prob) for dance, prob in zip(dances, probs)}