Spaces:
Runtime error
Runtime error
File size: 8,738 Bytes
5273d83 3d0d57c 5273d83 f0af1c3 5273d83 3d0d57c 5273d83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
import re
import pandas as pd
from pathlib import Path
import glob
from llama_index import GPTVectorStoreIndex, download_loader, SimpleDirectoryReader, SimpleWebPageReader
from langchain.document_loaders import PyPDFLoader, TextLoader
from langchain.agents import initialize_agent, Tool
from langchain.llms import OpenAI
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.docstore.document import Document
import src.utils as utils
import logging
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)
logger = logging.getLogger(__name__)
import warnings
warnings.filterwarnings('ignore')
class DATA_LOADER:
def __init__(self):
# Instantiate UTILS class object
self.utils_obj = utils.UTILS()
def load_documents_from_urls(self, urls=[], doc_type='urls'):
url_documents = self.load_document(doc_type=doc_type, urls=urls)
return url_documents
def load_documents_from_pdf(self, doc_filepath='', urls=[], doc_type='pdf'):
if doc_type == 'pdf':
pdf_documents = self.load_document(doc_type=doc_type, doc_filepath=doc_filepath)
elif doc_type == 'online_pdf':
pdf_documents = self.load_document(doc_type=doc_type, urls=urls)
return pdf_documents
def load_documents_from_directory(self, doc_filepath='', doc_type='directory'):
doc_documents = self.load_document(doc_type=doc_type, doc_filepath=doc_filepath)
return doc_documents
def load_documents_from_text(self, doc_filepath='', doc_type='textfile'):
text_documents = self.load_document(doc_type=doc_type, doc_filepath=doc_filepath)
return text_documents
def pdf_loader(self, filepath):
loader = PyPDFLoader(filepath)
return loader.load_and_split()
def text_loader(self, filepath):
loader = TextLoader(filepath)
return loader.load()
def load_document(self,
doc_type='pdf',
doc_filepath='',
urls=[]
):
logger.info(f'Loading {doc_type} in raw format from: {doc_filepath}')
documents = []
# Validation checks
if doc_type in ['directory', 'pdf', 'textfile']:
if not os.path.exists(doc_filepath):
logger.warning(f"{doc_filepath} does not exist, nothing can be loaded!")
return documents
elif doc_type in ['online_pdf', 'urls']:
if len(urls) == 0:
logger.warning(f"URLs list empty, nothing can be loaded!")
return documents
######### Load documents #########
# Load PDF
if doc_type == 'pdf':
# Load multiple PDFs from directory
if os.path.isdir(doc_filepath):
pdfs = glob.glob(f"{doc_filepath}/*.pdf")
logger.info(f'Total PDF files to load: {len(pdfs)}')
for pdf in pdfs:
documents.extend(self.pdf_loader(pdf))
# Loading from a single PDF file
elif os.path.isfile(doc_filepath) and doc_filepath.endswith('.pdf'):
documents.extend(self.pdf_loader(doc_filepath))
# Load PDFs from online (urls). Can read multiple PDFs from multiple URLs in one-shot
elif doc_type == 'online_pdf':
logger.info(f'URLs to load Online PDFs are from: {urls}')
valid_urls = self.utils_obj.validate_url_format(
urls=urls,
url_type=doc_type
)
for url in valid_urls:
# Load and split PDF pages per document
documents.extend(self.pdf_loader(url))
# Load data from URLs (can load data from multiple URLs)
elif doc_type == 'urls':
logger.info(f'URLs to load data from are: {urls}')
valid_urls = self.utils_obj.validate_url_format(
urls=urls,
url_type=doc_type
)
# Load data from URLs
docs = SimpleWebPageReader(html_to_text=True).load_data(valid_urls)
docs = [Document(page_content=doc.text) for doc in docs]
documents.extend(docs)
# Load data from text file(s)
elif doc_type == 'textfile':
# Load multiple text files from directory
if os.path.isdir(doc_filepath):
text_files = glob.glob(f"{doc_filepath}/*.txt")
logger.info(f'Total text files to load: {len(text_files)}')
for tf in text_files:
documents.extend(self.text_loader(tf))
# Loading from a single text file
elif os.path.isfile(doc_filepath) and doc_filepath.endswith('.txt'):
documents.extend(self.text_loader(doc_filepath))
# Load data from files on the local directory (files may be of type .pdf, .txt, .doc, etc.)
elif doc_type == 'directory':
# Load multiple PDFs from directory
if os.path.isdir(doc_filepath):
documents = SimpleDirectoryReader(
input_dir=doc_filepath
).load_data()
# Loading from a file
elif os.path.isfile(doc_filepath):
documents.extend(SimpleDirectoryReader(
input_files=[doc_filepath]
).load_data())
# Load data from URLs in Knowledge Base format
elif doc_type == 'url-kb':
KnowledgeBaseWebReader = download_loader("KnowledgeBaseWebReader")
loader = KnowledgeBaseWebReader()
for url in urls:
doc = loader.load_data(
root_url=url,
link_selectors=['.article-list a', '.article-list a'],
article_path='/articles',
body_selector='.article-body',
title_selector='.article-title',
subtitle_selector='.article-subtitle',
)
documents.extend(doc)
# Load data from URLs and create an agent chain using ChatGPT
elif doc_type == 'url-chatgpt':
BeautifulSoupWebReader = download_loader("BeautifulSoupWebReader")
loader = BeautifulSoupWebReader()
# Load data from URLs
documents = loader.load_data(urls=urls)
# Build the Vector database
index = GPTVectorStoreIndex(documents)
tools = [
Tool(
name="Website Index",
func=lambda q: index.query(q),
description=f"Useful when you want answer questions about the text retrieved from websites.",
),
]
# Call ChatGPT API
llm = OpenAI(temperature=0) # Keep temperature=0 to search from the given urls only
memory = ConversationBufferMemory(memory_key="chat_history")
agent_chain = initialize_agent(
tools, llm, agent="zero-shot-react-description", memory=memory
)
output = agent_chain.run(input="What language is on this website?")
# Clean documents
documents = self.clean_documents(documents)
logger.info(f'{doc_type} in raw format from: {doc_filepath} loaded successfully!')
return documents
def clean_documents(
self,
documents
):
cleaned_documents = []
for document in documents:
if hasattr(document, 'page_content'):
document.page_content = self.utils_obj.replace_newlines_and_spaces(document.page_content)
elif hasattr(document, 'text'):
document.text = self.utils_obj.replace_newlines_and_spaces(document.text)
else:
document = self.utils_obj.replace_newlines_and_spaces(document)
cleaned_documents.append(document)
return cleaned_documents
def load_external_links_used_by_FTAs(self,
sheet_filepath='./data/urls_used_by_ftas/external_links_used_by_FTAs.xlsx'
):
xls = pd.ExcelFile(sheet_filepath)
df = pd.DataFrame(columns=['S.No.', 'Link used for', 'Link type', 'Link'])
for sheet_name in xls.sheet_names:
sheet = pd.read_excel(xls, sheet_name)
if sheet.shape[0] > 0:
df = pd.concat([df, sheet])
else:
logger.info(f'{sheet_name} has no content.')
df = df[['Link used for', 'Link type', 'Link']]
# Clean df
df = self.utils_obj.clean_df(df)
logger.info(f'Total links available across all cities: {df.shape[0]}')
return df
|