Spaces:
vztu
/
Runtime error

File size: 38,838 Bytes
feb2918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
import math
from functools import lru_cache, reduce
from operator import mul

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from einops import rearrange
from timm.models.layers import DropPath, trunc_normal_


def fragment_infos(D, H, W, fragments=7, device="cuda"):
    m = torch.arange(fragments).unsqueeze(-1).float()
    m = (m + m.t() * fragments).reshape(1, 1, 1, fragments, fragments)
    m = F.interpolate(m.to(device), size=(D, H, W)).permute(0, 2, 3, 4, 1)
    return m.long()


@lru_cache
def global_position_index(
    D,
    H,
    W,
    fragments=(1, 7, 7),
    window_size=(8, 7, 7),
    shift_size=(0, 0, 0),
    device="cuda",
):
    frags_d = torch.arange(fragments[0])
    frags_h = torch.arange(fragments[1])
    frags_w = torch.arange(fragments[2])
    frags = torch.stack(
        torch.meshgrid(frags_d, frags_h, frags_w)
    ).float()  # 3, Fd, Fh, Fw
    coords = (
        torch.nn.functional.interpolate(frags[None].to(device), size=(D, H, W))
        .long()
        .permute(0, 2, 3, 4, 1)
    )
    # print(shift_size)
    coords = torch.roll(
        coords, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)
    )
    window_coords = window_partition(coords, window_size)
    relative_coords = (
        window_coords[:, None, :] - window_coords[:, :, None]
    )  # Wd*Wh*Ww, Wd*Wh*Ww, 3
    return relative_coords  # relative_coords


@lru_cache
def get_adaptive_window_size(
    base_window_size, input_x_size, base_x_size,
):
    tw, hw, ww = base_window_size
    tx_, hx_, wx_ = input_x_size
    tx, hx, wx = base_x_size
    print((tw * tx_) // tx, (hw * hx_) // hx, (ww * wx_) // wx)
    return (tw * tx_) // tx, (hw * hx_) // hx, (ww * wx_) // wx


class Mlp(nn.Module):
    """Multilayer perceptron."""

    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


def window_partition(x, window_size):
    """
    Args:
        x: (B, D, H, W, C)
        window_size (tuple[int]): window size

    Returns:
        windows: (B*num_windows, window_size*window_size, C)
    """
    B, D, H, W, C = x.shape
    x = x.view(
        B,
        D // window_size[0],
        window_size[0],
        H // window_size[1],
        window_size[1],
        W // window_size[2],
        window_size[2],
        C,
    )
    windows = (
        x.permute(0, 1, 3, 5, 2, 4, 6, 7)
        .contiguous()
        .view(-1, reduce(mul, window_size), C)
    )
    return windows


def window_reverse(windows, window_size, B, D, H, W):
    """
    Args:
        windows: (B*num_windows, window_size, window_size, C)
        window_size (tuple[int]): Window size
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, D, H, W, C)
    """
    x = windows.view(
        B,
        D // window_size[0],
        H // window_size[1],
        W // window_size[2],
        window_size[0],
        window_size[1],
        window_size[2],
        -1,
    )
    x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1)
    return x


def get_window_size(x_size, window_size, shift_size=None):
    use_window_size = list(window_size)
    if shift_size is not None:
        use_shift_size = list(shift_size)
    for i in range(len(x_size)):
        if x_size[i] <= window_size[i]:
            use_window_size[i] = x_size[i]
            if shift_size is not None:
                use_shift_size[i] = 0

    if shift_size is None:
        return tuple(use_window_size)
    else:
        return tuple(use_window_size), tuple(use_shift_size)


class WindowAttention3D(nn.Module):
    """Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.
    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The temporal length, height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(
        self,
        dim,
        window_size,
        num_heads,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        frag_bias=False,
    ):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wd, Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros(
                (2 * window_size[0] - 1)
                * (2 * window_size[1] - 1)
                * (2 * window_size[2] - 1),
                num_heads,
            )
        )  # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH
        if frag_bias:
            self.fragment_position_bias_table = nn.Parameter(
                torch.zeros(
                    (2 * window_size[0] - 1)
                    * (2 * window_size[1] - 1)
                    * (2 * window_size[2] - 1),
                    num_heads,
                )
            )

        # get pair-wise relative position index for each token inside the window
        coords_d = torch.arange(self.window_size[0])
        coords_h = torch.arange(self.window_size[1])
        coords_w = torch.arange(self.window_size[2])
        coords = torch.stack(
            torch.meshgrid(coords_d, coords_h, coords_w)
        )  # 3, Wd, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 3, Wd*Wh*Ww
        relative_coords = (
            coords_flatten[:, :, None] - coords_flatten[:, None, :]
        )  # 3, Wd*Wh*Ww, Wd*Wh*Ww
        relative_coords = relative_coords.permute(
            1, 2, 0
        ).contiguous()  # Wd*Wh*Ww, Wd*Wh*Ww, 3
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 2] += self.window_size[2] - 1

        relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (
            2 * self.window_size[2] - 1
        )
        relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1
        relative_position_index = relative_coords.sum(-1)  # Wd*Wh*Ww, Wd*Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=0.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None, fmask=None, resized_window_size=None):
        """Forward function.
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, N, N) or None
        """
        # print(x.shape)
        B_, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B_, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv[0], qkv[1], qkv[2]  # B_, nH, N, C

        q = q * self.scale
        attn = q @ k.transpose(-2, -1)

        if resized_window_size is None:
            rpi = self.relative_position_index[:N, :N]
        else:
            relative_position_index = self.relative_position_index.reshape(
                *self.window_size, *self.window_size
            )
            d, h, w = resized_window_size

            rpi = relative_position_index[:d, :h, :w, :d, :h, :w]
        relative_position_bias = self.relative_position_bias_table[
            rpi.reshape(-1)
        ].reshape(
            N, N, -1
        )  # Wd*Wh*Ww,Wd*Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(
            2, 0, 1
        ).contiguous()  # nH, Wd*Wh*Ww, Wd*Wh*Ww
        if hasattr(self, "fragment_position_bias_table"):
            fragment_position_bias = self.fragment_position_bias_table[
                rpi.reshape(-1)
            ].reshape(
                N, N, -1
            )  # Wd*Wh*Ww,Wd*Wh*Ww,nH
            fragment_position_bias = fragment_position_bias.permute(
                2, 0, 1
            ).contiguous()  # nH, Wd*Wh*Ww, Wd*Wh*Ww

        ### Mask Position Bias
        if fmask is not None:
            # fgate = torch.where(fmask - fmask.transpose(-1, -2) == 0, 1, 0).float()
            fgate = fmask.abs().sum(-1)
            nW = fmask.shape[0]
            relative_position_bias = relative_position_bias.unsqueeze(0)
            fgate = fgate.unsqueeze(1)
            # print(fgate.shape, relative_position_bias.shape)
            if hasattr(self, "fragment_position_bias_table"):
                relative_position_bias = (
                    relative_position_bias * fgate
                    + fragment_position_bias * (1 - fgate)
                )

            attn = attn.view(
                B_ // nW, nW, self.num_heads, N, N
            ) + relative_position_bias.unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
        else:
            attn = attn + relative_position_bias.unsqueeze(0)  # B_, nH, N, N

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
                1
            ).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class SwinTransformerBlock3D(nn.Module):
    """Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (tuple[int]): Window size.
        shift_size (tuple[int]): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(
        self,
        dim,
        num_heads,
        window_size=(2, 7, 7),
        shift_size=(0, 0, 0),
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        use_checkpoint=False,
        jump_attention=False,
        frag_bias=False,
    ):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        self.use_checkpoint = use_checkpoint
        self.jump_attention = jump_attention
        self.frag_bias = frag_bias

        assert (
            0 <= self.shift_size[0] < self.window_size[0]
        ), "shift_size must in 0-window_size"
        assert (
            0 <= self.shift_size[1] < self.window_size[1]
        ), "shift_size must in 0-window_size"
        assert (
            0 <= self.shift_size[2] < self.window_size[2]
        ), "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention3D(
            dim,
            window_size=self.window_size,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
            frag_bias=frag_bias,
        )

        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )

    def forward_part1(self, x, mask_matrix, resized_window_size=None):
        B, D, H, W, C = x.shape
        window_size, shift_size = get_window_size(
            (D, H, W),
            self.window_size if resized_window_size is None else resized_window_size,
            self.shift_size,
        )

        x = self.norm1(x)
        # pad feature maps to multiples of window size
        pad_l = pad_t = pad_d0 = 0
        pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0]
        pad_b = (window_size[1] - H % window_size[1]) % window_size[1]
        pad_r = (window_size[2] - W % window_size[2]) % window_size[2]

        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1))
        _, Dp, Hp, Wp, _ = x.shape
        if False:  # not hasattr(self, 'finfo_windows'):
            finfo = fragment_infos(Dp, Hp, Wp)

        # cyclic shift
        if any(i > 0 for i in shift_size):
            shifted_x = torch.roll(
                x,
                shifts=(-shift_size[0], -shift_size[1], -shift_size[2]),
                dims=(1, 2, 3),
            )
            if False:  # not hasattr(self, 'finfo_windows'):
                shifted_finfo = torch.roll(
                    finfo,
                    shifts=(-shift_size[0], -shift_size[1], -shift_size[2]),
                    dims=(1, 2, 3),
                )
            attn_mask = mask_matrix
        else:
            shifted_x = x
            if False:  # not hasattr(self, 'finfo_windows'):
                shifted_finfo = finfo
            attn_mask = None
        # partition windows
        x_windows = window_partition(shifted_x, window_size)  # B*nW, Wd*Wh*Ww, C
        if False:  # not hasattr(self, 'finfo_windows'):
            self.finfo_windows = window_partition(shifted_finfo, window_size)
        # W-MSA/SW-MSA
        # print(shift_size)
        gpi = global_position_index(
            Dp,
            Hp,
            Wp,
            fragments=(1,) + window_size[1:],
            window_size=window_size,
            shift_size=shift_size,
            device=x.device,
        )
        attn_windows = self.attn(
            x_windows,
            mask=attn_mask,
            fmask=gpi,
            resized_window_size=window_size
            if resized_window_size is not None
            else None,
        )  # self.finfo_windows)  # B*nW, Wd*Wh*Ww, C
        # merge windows
        attn_windows = attn_windows.view(-1, *(window_size + (C,)))
        shifted_x = window_reverse(
            attn_windows, window_size, B, Dp, Hp, Wp
        )  # B D' H' W' C
        # reverse cyclic shift
        if any(i > 0 for i in shift_size):
            x = torch.roll(
                shifted_x,
                shifts=(shift_size[0], shift_size[1], shift_size[2]),
                dims=(1, 2, 3),
            )
        else:
            x = shifted_x

        if pad_d1 > 0 or pad_r > 0 or pad_b > 0:
            x = x[:, :D, :H, :W, :].contiguous()
        return x

    def forward_part2(self, x):
        return self.drop_path(self.mlp(self.norm2(x)))

    def forward(self, x, mask_matrix, resized_window_size=None):
        """Forward function.

        Args:
            x: Input feature, tensor size (B, D, H, W, C).
            mask_matrix: Attention mask for cyclic shift.
        """

        shortcut = x
        if not self.jump_attention:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(
                    self.forward_part1, x, mask_matrix, resized_window_size
                )
            else:
                x = self.forward_part1(x, mask_matrix, resized_window_size)
            x = shortcut + self.drop_path(x)

        if self.use_checkpoint:
            x = x + checkpoint.checkpoint(self.forward_part2, x)
        else:
            x = x + self.forward_part2(x)

        return x


class PatchMerging(nn.Module):
    """Patch Merging Layer

    Args:
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """Forward function.

        Args:
            x: Input feature, tensor size (B, D, H, W, C).
        """
        B, D, H, W, C = x.shape

        # padding
        pad_input = (H % 2 == 1) or (W % 2 == 1)
        if pad_input:
            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))

        x0 = x[:, :, 0::2, 0::2, :]  # B D H/2 W/2 C
        x1 = x[:, :, 1::2, 0::2, :]  # B D H/2 W/2 C
        x2 = x[:, :, 0::2, 1::2, :]  # B D H/2 W/2 C
        x3 = x[:, :, 1::2, 1::2, :]  # B D H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B D H/2 W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x


# cache each stage results
@lru_cache()
def compute_mask(D, H, W, window_size, shift_size, device):
    img_mask = torch.zeros((1, D, H, W, 1), device=device)  # 1 Dp Hp Wp 1
    cnt = 0
    for d in (
        slice(-window_size[0]),
        slice(-window_size[0], -shift_size[0]),
        slice(-shift_size[0], None),
    ):
        for h in (
            slice(-window_size[1]),
            slice(-window_size[1], -shift_size[1]),
            slice(-shift_size[1], None),
        ):
            for w in (
                slice(-window_size[2]),
                slice(-window_size[2], -shift_size[2]),
                slice(-shift_size[2], None),
            ):
                img_mask[:, d, h, w, :] = cnt
                cnt += 1
    mask_windows = window_partition(img_mask, window_size)  # nW, ws[0]*ws[1]*ws[2], 1
    mask_windows = mask_windows.squeeze(-1)  # nW, ws[0]*ws[1]*ws[2]
    attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
    attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
        attn_mask == 0, float(0.0)
    )
    return attn_mask


class BasicLayer(nn.Module):
    """A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of feature channels
        depth (int): Depths of this stage.
        num_heads (int): Number of attention head.
        window_size (tuple[int]): Local window size. Default: (1,7,7).
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
    """

    def __init__(
        self,
        dim,
        depth,
        num_heads,
        window_size=(1, 7, 7),
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        norm_layer=nn.LayerNorm,
        downsample=None,
        use_checkpoint=False,
        jump_attention=False,
        frag_bias=False,
    ):
        super().__init__()
        self.window_size = window_size
        self.shift_size = tuple(i // 2 for i in window_size)
        self.depth = depth
        self.use_checkpoint = use_checkpoint
        # print(window_size)
        # build blocks
        self.blocks = nn.ModuleList(
            [
                SwinTransformerBlock3D(
                    dim=dim,
                    num_heads=num_heads,
                    window_size=window_size,
                    shift_size=(0, 0, 0) if (i % 2 == 0) else self.shift_size,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop,
                    attn_drop=attn_drop,
                    drop_path=drop_path[i]
                    if isinstance(drop_path, list)
                    else drop_path,
                    norm_layer=norm_layer,
                    use_checkpoint=use_checkpoint,
                    jump_attention=jump_attention,
                    frag_bias=frag_bias,
                )
                for i in range(depth)
            ]
        )

        self.downsample = downsample
        if self.downsample is not None:
            self.downsample = downsample(dim=dim, norm_layer=norm_layer)

    def forward(self, x, resized_window_size=None):
        """Forward function.

        Args:
            x: Input feature, tensor size (B, C, D, H, W).
        """
        # calculate attention mask for SW-MSA
        B, C, D, H, W = x.shape

        window_size, shift_size = get_window_size(
            (D, H, W),
            self.window_size if resized_window_size is None else resized_window_size,
            self.shift_size,
        )
        # print(window_size)
        x = rearrange(x, "b c d h w -> b d h w c")
        Dp = int(np.ceil(D / window_size[0])) * window_size[0]
        Hp = int(np.ceil(H / window_size[1])) * window_size[1]
        Wp = int(np.ceil(W / window_size[2])) * window_size[2]
        attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device)
        for blk in self.blocks:
            x = blk(x, attn_mask, resized_window_size=resized_window_size)
        x = x.view(B, D, H, W, -1)

        if self.downsample is not None:
            x = self.downsample(x)
        x = rearrange(x, "b d h w c -> b c d h w")
        return x


class PatchEmbed3D(nn.Module):
    """Video to Patch Embedding.

    Args:
        patch_size (int): Patch token size. Default: (2,4,4).
        in_chans (int): Number of input video channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, patch_size=(2, 4, 4), in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        self.patch_size = patch_size

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv3d(
            in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
        )
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        """Forward function."""
        # padding
        _, _, D, H, W = x.size()
        if W % self.patch_size[2] != 0:
            x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
        if H % self.patch_size[1] != 0:
            x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
        if D % self.patch_size[0] != 0:
            x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))

        x = self.proj(x)  # B C D Wh Ww
        if self.norm is not None:
            D, Wh, Ww = x.size(2), x.size(3), x.size(4)
            x = x.flatten(2).transpose(1, 2)
            x = self.norm(x)
            x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)

        return x


class SwinTransformer3D(nn.Module):
    """Swin Transformer backbone.
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        patch_size (int | tuple(int)): Patch size. Default: (4,4,4).
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        depths (tuple[int]): Depths of each Swin Transformer stage.
        num_heads (tuple[int]): Number of attention head of each stage.
        window_size (int): Window size. Default: 7.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
        drop_rate (float): Dropout rate.
        attn_drop_rate (float): Attention dropout rate. Default: 0.
        drop_path_rate (float): Stochastic depth rate. Default: 0.2.
        norm_layer: Normalization layer. Default: nn.LayerNorm.
        patch_norm (bool): If True, add normalization after patch embedding. Default: False.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters.
    """

    def __init__(
        self,
        pretrained=None,
        pretrained2d=False,
        patch_size=(2, 4, 4),
        in_chans=3,
        embed_dim=96,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
        window_size=(8, 7, 7),
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.1,
        norm_layer=nn.LayerNorm,
        patch_norm=True,
        frozen_stages=-1,
        use_checkpoint=True,
        jump_attention=[False, False, False, False],
        frag_biases=[True, True, True, False],
        base_x_size=(32, 224, 224),
    ):
        super().__init__()

        self.pretrained = pretrained
        self.pretrained2d = pretrained2d
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        self.frozen_stages = frozen_stages
        self.window_size = window_size
        self.patch_size = patch_size
        self.base_x_size = base_x_size

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed3D(
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None,
        )

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
        ]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(
                dim=int(embed_dim * 2 ** i_layer),
                depth=depths[i_layer],
                num_heads=num_heads[i_layer],
                window_size=window_size[i_layer]
                if isinstance(window_size, list)
                else window_size,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
                norm_layer=norm_layer,
                downsample=PatchMerging if i_layer < self.num_layers - 1 else None,
                use_checkpoint=use_checkpoint,
                jump_attention=jump_attention[i_layer],
                frag_bias=frag_biases[i_layer],
            )
            self.layers.append(layer)

        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))

        # add a norm layer for each output
        self.norm = norm_layer(self.num_features)

        self._freeze_stages()

        self.init_weights()

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            self.patch_embed.eval()
            for param in self.patch_embed.parameters():
                param.requires_grad = False

        if self.frozen_stages >= 1:
            self.pos_drop.eval()
            for i in range(0, self.frozen_stages):
                m = self.layers[i]
                m.eval()
                for param in m.parameters():
                    param.requires_grad = False

    def inflate_weights(self):
        """Inflate the swin2d parameters to swin3d.

        The differences between swin3d and swin2d mainly lie in an extra
        axis. To utilize the pretrained parameters in 2d model,
        the weight of swin2d models should be inflated to fit in the shapes of
        the 3d counterpart.

        Args:
            logger (logging.Logger): The logger used to print
                debugging infomation.
        """
        checkpoint = torch.load(self.pretrained, map_location="cpu")
        state_dict = checkpoint["model"]

        # delete relative_position_index since we always re-init it
        relative_position_index_keys = [
            k for k in state_dict.keys() if "relative_position_index" in k
        ]
        for k in relative_position_index_keys:
            del state_dict[k]

        # delete attn_mask since we always re-init it
        attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k]
        for k in attn_mask_keys:
            del state_dict[k]

        state_dict["patch_embed.proj.weight"] = (
            state_dict["patch_embed.proj.weight"]
            .unsqueeze(2)
            .repeat(1, 1, self.patch_size[0], 1, 1)
            / self.patch_size[0]
        )

        # bicubic interpolate relative_position_bias_table if not match
        relative_position_bias_table_keys = [
            k for k in state_dict.keys() if "relative_position_bias_table" in k
        ]
        for k in relative_position_bias_table_keys:
            relative_position_bias_table_pretrained = state_dict[k]
            relative_position_bias_table_current = self.state_dict()[k]
            L1, nH1 = relative_position_bias_table_pretrained.size()
            L2, nH2 = relative_position_bias_table_current.size()
            L2 = (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
            wd = self.window_size[0]
            if nH1 != nH2:
                print(f"Error in loading {k}, passing")
            else:
                if L1 != L2:
                    S1 = int(L1 ** 0.5)
                    relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
                        relative_position_bias_table_pretrained.permute(1, 0).view(
                            1, nH1, S1, S1
                        ),
                        size=(
                            2 * self.window_size[1] - 1,
                            2 * self.window_size[2] - 1,
                        ),
                        mode="bicubic",
                    )
                    relative_position_bias_table_pretrained = relative_position_bias_table_pretrained_resized.view(
                        nH2, L2
                    ).permute(
                        1, 0
                    )
            state_dict[k] = relative_position_bias_table_pretrained.repeat(
                2 * wd - 1, 1
            )

        msg = self.load_state_dict(state_dict, strict=False)
        print(msg)
        print(f"=> loaded successfully '{self.pretrained}'")
        del checkpoint
        torch.cuda.empty_cache()

    def load_swin(self, load_path, strict=False):
        print("loading swin lah")
        from collections import OrderedDict

        model_state_dict = self.state_dict()
        state_dict = torch.load(load_path)["state_dict"]

        clean_dict = OrderedDict()
        for key, value in state_dict.items():
            if "backbone" in key:
                clean_key = key[9:]
                clean_dict[clean_key] = value
                if "relative_position_bias_table" in clean_key:
                    forked_key = clean_key.replace(
                        "relative_position_bias_table", "fragment_position_bias_table"
                    )
                    if forked_key in clean_dict:
                        print("load_swin_error?")
                    else:
                        clean_dict[forked_key] = value

        # bicubic interpolate relative_position_bias_table if not match
        relative_position_bias_table_keys = [
            k for k in clean_dict.keys() if "relative_position_bias_table" in k
        ]
        for k in relative_position_bias_table_keys:
            print(k)
            relative_position_bias_table_pretrained = clean_dict[k]
            relative_position_bias_table_current = model_state_dict[k]
            L1, nH1 = relative_position_bias_table_pretrained.size()
            L2, nH2 = relative_position_bias_table_current.size()
            if isinstance(self.window_size, list):
                i_layer = int(k.split(".")[1])
                L2 = (2 * self.window_size[i_layer][1] - 1) * (
                    2 * self.window_size[i_layer][2] - 1
                )
                wd = self.window_size[i_layer][0]
            else:
                L2 = (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
                wd = self.window_size[0]
            if nH1 != nH2:
                print(f"Error in loading {k}, passing")
            else:
                if L1 != L2:
                    S1 = int((L1 / 15) ** 0.5)
                    print(
                        relative_position_bias_table_pretrained.shape, 15, nH1, S1, S1
                    )
                    relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
                        relative_position_bias_table_pretrained.permute(1, 0)
                        .view(nH1, 15, S1, S1)
                        .transpose(0, 1),
                        size=(
                            2 * self.window_size[i_layer][1] - 1,
                            2 * self.window_size[i_layer][2] - 1,
                        ),
                        mode="bicubic",
                    )
                    relative_position_bias_table_pretrained = relative_position_bias_table_pretrained_resized.transpose(
                        0, 1
                    ).view(
                        nH2, 15, L2
                    )
            clean_dict[k] = relative_position_bias_table_pretrained  # .repeat(2*wd-1,1)

        ## Clean Mismatched Keys
        for key, value in model_state_dict.items():
            if key in clean_dict:
                if value.shape != clean_dict[key].shape:
                    print(key)
                    clean_dict.pop(key)

        self.load_state_dict(clean_dict, strict=strict)

    def init_weights(self, pretrained=None):
        print(self.pretrained, self.pretrained2d)
        """Initialize the weights in backbone.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """

        def _init_weights(m):
            if isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=0.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.LayerNorm):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)

        if pretrained:
            self.pretrained = pretrained
        if isinstance(self.pretrained, str):
            self.apply(_init_weights)
            # logger = get_root_logger()
            # logger.info(f"load model from: {self.pretrained}")

            if self.pretrained2d:
                # Inflate 2D model into 3D model.
                self.inflate_weights()
            else:
                # Directly load 3D model.
                self.load_swin(self.pretrained, strict=False)  # , logger=logger)
        elif self.pretrained is None:
            self.apply(_init_weights)
        else:
            raise TypeError("pretrained must be a str or None")

    def forward(self, x, multi=False, layer=-1, adaptive_window_size=False):

        """Forward function."""
        if adaptive_window_size:
            resized_window_size = get_adaptive_window_size(
                self.window_size, x.shape[2:], self.base_x_size
            )
        else:
            resized_window_size = None

        x = self.patch_embed(x)

        x = self.pos_drop(x)
        feats = [x]

        for l, mlayer in enumerate(self.layers):
            x = mlayer(x.contiguous(), resized_window_size)
            feats += [x]

        x = rearrange(x, "n c d h w -> n d h w c")
        x = self.norm(x)
        x = rearrange(x, "n d h w c -> n c d h w")

        if multi:
            shape = x.shape[2:]
            return torch.cat(
                [F.interpolate(xi, size=shape, mode="trilinear") for xi in feats[:-1]],
                1,
            )
        elif layer > -1:
            print("something", len(feats))
            return feats[layer]
        else:
            return x

    def train(self, mode=True):
        """Convert the model into training mode while keep layers freezed."""
        super(SwinTransformer3D, self).train(mode)
        self._freeze_stages()


def swin_3d_tiny(**kwargs):
    ## Original Swin-3D Tiny with reduced windows
    return SwinTransformer3D(depths=[2, 2, 6, 2], frag_biases=[0, 0, 0, 0], **kwargs)


def swin_3d_small(**kwargs):
    # Original Swin-3D Small with reduced windows
    return SwinTransformer3D(depths=[2, 2, 18, 2], frag_biases=[0, 0, 0, 0], **kwargs)


class SwinTransformer2D(nn.Sequential):
    def __init__(self):
        ## Only backbone for Swin Transformer 2D
        from timm.models import swin_tiny_patch4_window7_224

        super().__init__(*list(swin_tiny_patch4_window7_224().children())[:-2])