Spaces:
vztu
/
Runtime error

File size: 16,137 Bytes
feb2918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a877246
feb2918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import time
from functools import partial, reduce

import torch
import torch.nn as nn
from torch.nn.functional import adaptive_avg_pool3d

from .conv_backbone import convnext_3d_small, convnext_3d_tiny, convnextv2_3d_pico, convnextv2_3d_femto, clip_vitL14
from .head import IQAHead, VARHead, VQAHead
from .swin_backbone import SwinTransformer2D as ImageBackbone
from .swin_backbone import SwinTransformer3D as VideoBackbone
from .swin_backbone import swin_3d_small, swin_3d_tiny


class BaseEvaluator(nn.Module):
    def __init__(
        self, backbone=dict(), vqa_head=dict(),
    ):
        super().__init__()
        self.backbone = VideoBackbone(**backbone)
        self.vqa_head = VQAHead(**vqa_head)

    def forward(self, vclip, inference=True, **kwargs):
        if inference:
            self.eval()
            with torch.no_grad():
                feat = self.backbone(vclip)
                score = self.vqa_head(feat)
            self.train()
            return score
        else:
            feat = self.backbone(vclip)
            score = self.vqa_head(feat)
            return score

    def forward_with_attention(self, vclip):
        self.eval()
        with torch.no_grad():
            feat, avg_attns = self.backbone(vclip, require_attn=True)
            score = self.vqa_head(feat)
            return score, avg_attns


class COVER(nn.Module):
    def __init__(
        self,
        backbone_size="divided",
        backbone_preserve_keys="fragments,resize",
        multi=False,
        layer=-1,
        backbone=dict(
            resize={"window_size": (4, 4, 4)}, fragments={"window_size": (4, 4, 4)}
        ),
        divide_head=False,
        vqa_head=dict(in_channels=768),
        var=False,
    ):
        self.backbone_preserve_keys = backbone_preserve_keys.split(",")
        self.multi = multi
        self.layer = layer
        super().__init__()
        for key, hypers in backbone.items():
            print(backbone_size)
            if key not in self.backbone_preserve_keys:
                continue
            if backbone_size == "divided":
                t_backbone_size = hypers["type"]
            else:
                t_backbone_size = backbone_size
            if t_backbone_size == "swin_tiny":
                b = swin_3d_tiny(**backbone[key])
            elif t_backbone_size == "swin_tiny_grpb":
                # to reproduce fast-vqa
                b = VideoBackbone()
            elif t_backbone_size == "swin_tiny_grpb_m":
                # to reproduce fast-vqa-m
                b = VideoBackbone(window_size=(4, 4, 4), frag_biases=[0, 0, 0, 0])
            elif t_backbone_size == "swin_small":
                b = swin_3d_small(**backbone[key])
            elif t_backbone_size == "conv_tiny":
                b = convnext_3d_tiny(pretrained=True)
            elif t_backbone_size == "conv_small":
                b = convnext_3d_small(pretrained=True)
            elif t_backbone_size == "conv_femto":
                b = convnextv2_3d_femto(pretrained=True)
            elif t_backbone_size == "conv_pico":
                b = convnextv2_3d_pico(pretrained=True)
            elif t_backbone_size == "xclip":
                raise NotImplementedError
            elif t_backbone_size == "clip_iqa+":
                b = clip_vitL14(pretrained=True)
            else:
                raise NotImplementedError
            print("Setting backbone:", key + "_backbone")
            setattr(self, key + "_backbone", b)
        if divide_head:
            for key in backbone:
                pre_pool = False #if key == "technical" else True
                if key not in self.backbone_preserve_keys:
                    continue
                b = VQAHead(pre_pool=pre_pool, **vqa_head)
                print("Setting head:", key + "_head")
                setattr(self, key + "_head", b)
        else:
            if var:
                self.vqa_head = VARHead(**vqa_head)
                print(b)
            else:
                self.vqa_head = VQAHead(**vqa_head)
        self.smtc_gate_tech = CrossGatingBlock(x_features=768, num_channels=768, block_size=1, 
                              grid_size=1, upsample_y=False, dropout_rate=0.1, use_bias=True, use_global_mlp=False)
        self.smtc_gate_aesc = CrossGatingBlock(x_features=768, num_channels=768, block_size=1, 
                              grid_size=1, upsample_y=False, dropout_rate=0.1, use_bias=True, use_global_mlp=False)

    def forward(
        self,
        vclips,
        inference=True,
        return_pooled_feats=False,
        return_raw_feats=False,
        reduce_scores=False,
        pooled=False,
        **kwargs
    ):
        assert (return_pooled_feats & return_raw_feats) == False, "Please only choose one kind of features to return"
        if inference:
            self.eval()
            with torch.no_grad():
                scores = []
                feats = {}
                for key in vclips:
                    if key == 'technical' or key == 'aesthetic':
                        feat = getattr(self, key.split("_")[0] + "_backbone")(
                            vclips[key], multi=self.multi, layer=self.layer, **kwargs
                        )
                        if key == 'technical':
                            feat_gated = self.smtc_gate_tech(feats['semantic'], feat)
                        elif key == 'aesthetic':
                            feat_gated = self.smtc_gate_aesc(feats['semantic'], feat)
                        if hasattr(self, key.split("_")[0] + "_head"):
                            scores += [getattr(self, key.split("_")[0] + "_head")(feat_gated)]
                        else:
                            scores += [getattr(self, "vqa_head")(feat_gated)]
                    elif key == 'semantic':
                        x = vclips[key].squeeze(0)
                        x =  x.permute(1,0,2,3)
                        feat, _ = getattr(self, key.split("_")[0] + "_backbone")(
                            x, multi=self.multi, layer=self.layer, **kwargs
                        )
                        # for image feature from clipiqa+ VIT14
                        # image feature shape (t, c) -> (16, 768)
                        feat = feat.permute(1,0).contiguous() # (c, t) -> (768, 16)
                        feat = feat.unsqueeze(-1).unsqueeze(-1) # (c, t, w, h) -> (768, 16, 1, 1)
                        feat_expand = feat.expand(-1, -1, 7, 7) # (c, t, w, h) -> (768, 16, 7, 7)
                        feat_expand = feat_expand.unsqueeze(0) # (b, c, t, w, h) -> (1, 768, 16, 7, 7)
                        if hasattr(self, key.split("_")[0] + "_head"):
                            score = getattr(self, key.split("_")[0] + "_head")(feat_expand)
                        else:
                            score = getattr(self, "vqa_head")(feat_expand)
                        scores += [score]
                        feats[key] = feat_expand
                if reduce_scores:
                    if len(scores) > 1:
                        scores = reduce(lambda x, y: x + y, scores)
                    else:
                        scores = scores[0]
                    if pooled:
                        scores = torch.mean(scores, (1, 2, 3, 4))
            self.train()
            if return_pooled_feats or return_raw_feats:
                return scores, feats
            return scores
        else:
            self.train()
            scores = []
            feats = {}
            for key in vclips:
                if key == 'technical' or key == 'aesthetic':
                    feat = getattr(self, key.split("_")[0] + "_backbone")(
                        vclips[key], multi=self.multi, layer=self.layer, **kwargs
                    )
                    if key == 'technical':
                        feat_gated = self.smtc_gate_tech(feats['semantic'], feat)
                    elif key == 'aesthetic':
                        feat_gated = self.smtc_gate_aesc(feats['semantic'], feat)
                    if hasattr(self, key.split("_")[0] + "_head"):
                        scores += [getattr(self, key.split("_")[0] + "_head")(feat_gated)]
                    else:
                        scores += [getattr(self, "vqa_head")(feat_gated)]
                    feats[key] = feat
                elif key == 'semantic':
                    scores_semantic_list = []
                    feats_semantic_list = []
                    for batch_idx in range(vclips[key].shape[0]):
                        x = vclips[key][batch_idx].squeeze()
                        x =  x.permute(1,0,2,3)
                        feat, _ = getattr(self, key.split("_")[0] + "_backbone")(
                            x, multi=self.multi, layer=self.layer, **kwargs
                        )
                        # for image feature from clipiqa+ VIT14
                        # image feature shape (t, c) -> (16, 768)
                        feat = feat.permute(1,0).contiguous() # (c, t) -> (768, 16)
                        feat = feat.unsqueeze(-1).unsqueeze(-1) # (c, t, w, h) -> (768, 16, 1, 1)
                        feat_expand = feat.expand(-1, -1, 7, 7) # (c, t, w, h) -> (768, 16, 7, 7)
                        feats_semantic_list.append(feat_expand)
                        if hasattr(self, key.split("_")[0] + "_head"):
                            feat_expand = feat_expand.unsqueeze(0) # (b, c, t, w, h) -> (1, 768, 16, 7, 7)
                            score = getattr(self, key.split("_")[0] + "_head")(feat_expand)
                            score = score.squeeze(0)
                            scores_semantic_list.append(score)
                        else:
                            feat_expand = feat_expand.unsqueeze(0) # (b, c, t, w, h) -> (1, 768, 16, 7, 7)
                            score = getattr(self, "vqa_head")(feat_expand)
                            score = score.squeeze(0)
                            scores_semantic_list.append(score)
                    scores_semantic_tensor = torch.stack(scores_semantic_list)
                    feats[key] = torch.stack(feats_semantic_list)
                    scores += [scores_semantic_tensor]
                if return_pooled_feats:
                    feats[key] = feat.mean((-3, -2, -1))
            if reduce_scores:
                if len(scores) > 1:
                    scores = reduce(lambda x, y: x + y, scores)
                else:
                    scores = scores[0]
                if pooled:
                    print(scores.shape)
                    scores = torch.mean(scores, (1, 2, 3, 4))
                    print(scores.shape)

            if return_pooled_feats:
                return scores, feats
            return scores

    def forward_head(
        self,
        feats,
        inference=True,
        reduce_scores=False,
        pooled=False,
        **kwargs
    ):
        if inference:
            self.eval()
            with torch.no_grad():
                scores = []
                feats = {}
                for key in feats:
                    feat = feats[key]
                    if hasattr(self, key.split("_")[0] + "_head"):
                        scores += [getattr(self, key.split("_")[0] + "_head")(feat)]
                    else:
                        scores += [getattr(self, "vqa_head")(feat)]
                if reduce_scores:
                    if len(scores) > 1:
                        scores = reduce(lambda x, y: x + y, scores)
                    else:
                        scores = scores[0]
                    if pooled:
                        scores = torch.mean(scores, (1, 2, 3, 4))
            self.train()
            return scores
        else:
            self.train()
            scores = []
            feats = {}
            for key in vclips:
                feat = getattr(self, key.split("_")[0] + "_backbone")(
                    vclips[key], multi=self.multi, layer=self.layer, **kwargs
                )
                if hasattr(self, key.split("_")[0] + "_head"):
                    scores += [getattr(self, key.split("_")[0] + "_head")(feat)]
                else:
                    scores += [getattr(self, "vqa_head")(feat)]
                if return_pooled_feats:
                    feats[key] = feat
            if reduce_scores:
                if len(scores) > 1:
                    scores = reduce(lambda x, y: x + y, scores)
                else:
                    scores = scores[0]
                if pooled:
                    print(scores.shape)
                    scores = torch.mean(scores, (1, 2, 3, 4))
                    print(scores.shape)

            if return_pooled_feats:
                return scores, feats
            return scores
        
class MinimumCOVER(nn.Module):
    def __init__(self):
        super().__init__()
        self.technical_backbone = VideoBackbone()
        self.aesthetic_backbone = convnext_3d_tiny(pretrained=True)
        self.technical_head = VQAHead(pre_pool=False, in_channels=768)
        self.aesthetic_head = VQAHead(pre_pool=False, in_channels=768)


    def forward(self,aesthetic_view, technical_view):
        self.eval()
        with torch.no_grad():
            aesthetic_score = self.aesthetic_head(self.aesthetic_backbone(aesthetic_view))
            technical_score = self.technical_head(self.technical_backbone(technical_view))
            
        aesthetic_score_pooled = torch.mean(aesthetic_score, (1,2,3,4))
        technical_score_pooled = torch.mean(technical_score, (1,2,3,4))
        return [aesthetic_score_pooled, technical_score_pooled]



class BaseImageEvaluator(nn.Module):
    def __init__(
        self, backbone=dict(), iqa_head=dict(),
    ):
        super().__init__()
        self.backbone = ImageBackbone(**backbone)
        self.iqa_head = IQAHead(**iqa_head)

    def forward(self, image, inference=True, **kwargs):
        if inference:
            self.eval()
            with torch.no_grad():
                feat = self.backbone(image)
                score = self.iqa_head(feat)
            self.train()
            return score
        else:
            feat = self.backbone(image)
            score = self.iqa_head(feat)
            return score

    def forward_with_attention(self, image):
        self.eval()
        with torch.no_grad():
            feat, avg_attns = self.backbone(image, require_attn=True)
            score = self.iqa_head(feat)
            return score, avg_attns

class CrossGatingBlock(nn.Module):  #input shape: n, c, h, w
    """Cross-gating MLP block."""
    def __init__(self, x_features, num_channels, block_size, grid_size, cin_y=0,upsample_y=True, use_bias=True, use_global_mlp=True, dropout_rate=0):
        super().__init__()
        self.cin_y = cin_y
        self.x_features = x_features
        self.num_channels = num_channels
        self.block_size = block_size
        self.grid_size = grid_size
        self.upsample_y = upsample_y
        self.use_bias = use_bias
        self.use_global_mlp = use_global_mlp
        self.drop = dropout_rate
        self.Conv_0 = nn.Linear(self.x_features, self.num_channels)
        self.Conv_1 = nn.Linear(self.num_channels, self.num_channels)
        self.in_project_x = nn.Linear(self.num_channels, self.num_channels, bias=self.use_bias)
        self.gelu1 = nn.GELU(approximate='tanh')
        self.out_project_y = nn.Linear(self.num_channels, self.num_channels, bias=self.use_bias)
        self.dropout1 = nn.Dropout(self.drop)
    def forward(self, x,y):     #n,c,t,h,w
        # Upscale Y signal, y is the gating signal.
        assert y.shape == x.shape
        x = x.permute(0,2,3,4,1).contiguous()  #n,t,h,w,c
        y = y.permute(0,2,3,4,1).contiguous()  #n,t,h,w,c
        x = self.Conv_0(x)
        y = self.Conv_1(y)
        shortcut_y = y
        x = self.in_project_x(x)
        gx = self.gelu1(x)
        # Apply cross gating
        y = y * gx  # gating y using x
        y = self.out_project_y(y)
        y = self.dropout1(y)
        y = y + shortcut_y # y = y * x + y
        return y.permute(0,4,1,2,3).contiguous()  #n,c,t,h,w