File size: 34,599 Bytes
feb2918 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 |
from functools import lru_cache, reduce
from operator import mul
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from einops import rearrange
from timm.models.layers import DropPath, trunc_normal_
def fragment_infos(D, H, W, fragments=7, device="cuda"):
m = torch.arange(fragments).unsqueeze(-1).float()
m = (m + m.t() * fragments).reshape(1, 1, 1, fragments, fragments)
m = F.interpolate(m.to(device), size=(D, H, W)).permute(0, 2, 3, 4, 1)
return m.long()
@lru_cache
def global_position_index(
D,
H,
W,
fragments=(1, 7, 7),
window_size=(8, 7, 7),
shift_size=(0, 0, 0),
device="cuda",
):
frags_d = torch.arange(fragments[0])
frags_h = torch.arange(fragments[1])
frags_w = torch.arange(fragments[2])
frags = torch.stack(
torch.meshgrid(frags_d, frags_h, frags_w)
).float() # 3, Fd, Fh, Fw
coords = (
torch.nn.functional.interpolate(frags[None].to(device), size=(D, H, W))
.long()
.permute(0, 2, 3, 4, 1)
)
# print(shift_size)
coords = torch.roll(
coords, shifts=(-shift_size[0], -shift_size[1], -shift_size[2]), dims=(1, 2, 3)
)
window_coords = window_partition(coords, window_size)
relative_coords = (
window_coords[:, None, :] - window_coords[:, :, None]
) # Wd*Wh*Ww, Wd*Wh*Ww, 3
return relative_coords # relative_coords
class Mlp(nn.Module):
"""Multilayer perceptron."""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, D, H, W, C)
window_size (tuple[int]): window size
Returns:
windows: (B*num_windows, window_size*window_size, C)
"""
B, D, H, W, C = x.shape
x = x.view(
B,
D // window_size[0],
window_size[0],
H // window_size[1],
window_size[1],
W // window_size[2],
window_size[2],
C,
)
windows = (
x.permute(0, 1, 3, 5, 2, 4, 6, 7)
.contiguous()
.view(-1, reduce(mul, window_size), C)
)
return windows
def window_reverse(windows, window_size, B, D, H, W):
"""
Args:
windows: (B*num_windows, window_size, window_size, C)
window_size (tuple[int]): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, D, H, W, C)
"""
x = windows.view(
B,
D // window_size[0],
H // window_size[1],
W // window_size[2],
window_size[0],
window_size[1],
window_size[2],
-1,
)
x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1)
return x
def get_window_size(x_size, window_size, shift_size=None):
use_window_size = list(window_size)
if shift_size is not None:
use_shift_size = list(shift_size)
for i in range(len(x_size)):
if x_size[i] <= window_size[i]:
use_window_size[i] = x_size[i]
if shift_size is not None:
use_shift_size[i] = 0
if shift_size is None:
return tuple(use_window_size)
else:
return tuple(use_window_size), tuple(use_shift_size)
class WindowAttention3D(nn.Module):
"""Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The temporal length, height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(
self,
dim,
window_size,
num_heads,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
frag_bias=False,
):
super().__init__()
self.dim = dim
self.window_size = window_size # Wd, Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros(
(2 * window_size[0] - 1)
* (2 * window_size[1] - 1)
* (2 * window_size[2] - 1),
num_heads,
)
) # 2*Wd-1 * 2*Wh-1 * 2*Ww-1, nH
if frag_bias:
self.fragment_position_bias_table = nn.Parameter(
torch.zeros(
(2 * window_size[0] - 1)
* (2 * window_size[1] - 1)
* (2 * window_size[2] - 1),
num_heads,
)
)
# get pair-wise relative position index for each token inside the window
coords_d = torch.arange(self.window_size[0])
coords_h = torch.arange(self.window_size[1])
coords_w = torch.arange(self.window_size[2])
coords = torch.stack(
torch.meshgrid(coords_d, coords_h, coords_w)
) # 3, Wd, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 3, Wd*Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 3, Wd*Wh*Ww, Wd*Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wd*Wh*Ww, Wd*Wh*Ww, 3
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 2] += self.window_size[2] - 1
relative_coords[:, :, 0] *= (2 * self.window_size[1] - 1) * (
2 * self.window_size[2] - 1
)
relative_coords[:, :, 1] *= 2 * self.window_size[2] - 1
relative_position_index = relative_coords.sum(-1) # Wd*Wh*Ww, Wd*Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=0.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None, fmask=None):
"""Forward function.
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, N, N) or None
"""
B_, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C
q = q * self.scale
attn = q @ k.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index[:N, :N].reshape(-1)
].reshape(
N, N, -1
) # Wd*Wh*Ww,Wd*Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww
if hasattr(self, "fragment_position_bias_table"):
fragment_position_bias = self.fragment_position_bias_table[
self.relative_position_index[:N, :N].reshape(-1)
].reshape(
N, N, -1
) # Wd*Wh*Ww,Wd*Wh*Ww,nH
fragment_position_bias = fragment_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww
### Mask Position Bias
if fmask is not None:
# fgate = torch.where(fmask - fmask.transpose(-1, -2) == 0, 1, 0).float()
fgate = fmask.abs().sum(-1)
nW = fmask.shape[0]
relative_position_bias = relative_position_bias.unsqueeze(0)
fgate = fgate.unsqueeze(1)
# print(fgate.shape, relative_position_bias.shape)
if hasattr(self, "fragment_position_bias_table"):
relative_position_bias = (
relative_position_bias * fgate
+ fragment_position_bias * (1 - fgate)
)
attn = attn.view(
B_ // nW, nW, self.num_heads, N, N
) + relative_position_bias.unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
else:
attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
1
).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
if B_ < 16:
avg_attn = (attn.mean((1, 2)).detach(), attn.mean((1, 3)).detach())
else:
avg_attn = None
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, avg_attn
class SwinTransformerBlock3D(nn.Module):
"""Swin Transformer Block.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (tuple[int]): Window size.
shift_size (tuple[int]): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(
self,
dim,
num_heads,
window_size=(2, 7, 7),
shift_size=(0, 0, 0),
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
use_checkpoint=False,
jump_attention=False,
frag_bias=False,
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
self.use_checkpoint = use_checkpoint
self.jump_attention = jump_attention
self.frag_bias = frag_bias
assert (
0 <= self.shift_size[0] < self.window_size[0]
), "shift_size must in 0-window_size"
assert (
0 <= self.shift_size[1] < self.window_size[1]
), "shift_size must in 0-window_size"
assert (
0 <= self.shift_size[2] < self.window_size[2]
), "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention3D(
dim,
window_size=self.window_size,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
frag_bias=frag_bias,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
def forward_part1(self, x, mask_matrix):
B, D, H, W, C = x.shape
window_size, shift_size = get_window_size(
(D, H, W), self.window_size, self.shift_size
)
x = self.norm1(x)
# pad feature maps to multiples of window size
pad_l = pad_t = pad_d0 = 0
pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0]
pad_b = (window_size[1] - H % window_size[1]) % window_size[1]
pad_r = (window_size[2] - W % window_size[2]) % window_size[2]
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1))
_, Dp, Hp, Wp, _ = x.shape
if False: # not hasattr(self, 'finfo_windows'):
finfo = fragment_infos(Dp, Hp, Wp)
# cyclic shift
if any(i > 0 for i in shift_size):
shifted_x = torch.roll(
x,
shifts=(-shift_size[0], -shift_size[1], -shift_size[2]),
dims=(1, 2, 3),
)
if False: # not hasattr(self, 'finfo_windows'):
shifted_finfo = torch.roll(
finfo,
shifts=(-shift_size[0], -shift_size[1], -shift_size[2]),
dims=(1, 2, 3),
)
attn_mask = mask_matrix
else:
shifted_x = x
if False: # not hasattr(self, 'finfo_windows'):
shifted_finfo = finfo
attn_mask = None
# partition windows
x_windows = window_partition(shifted_x, window_size) # B*nW, Wd*Wh*Ww, C
if False: # not hasattr(self, 'finfo_windows'):
self.finfo_windows = window_partition(shifted_finfo, window_size)
# W-MSA/SW-MSA
# print(shift_size)
gpi = global_position_index(
Dp, Hp, Wp, window_size=window_size, shift_size=shift_size, device=x.device
)
attn_windows, avg_attn = self.attn(
x_windows, mask=attn_mask, fmask=gpi
) # self.finfo_windows) # B*nW, Wd*Wh*Ww, C
# merge windows
attn_windows = attn_windows.view(-1, *(window_size + (C,)))
shifted_x = window_reverse(
attn_windows, window_size, B, Dp, Hp, Wp
) # B D' H' W' C
# reverse cyclic shift
if any(i > 0 for i in shift_size):
x = torch.roll(
shifted_x,
shifts=(shift_size[0], shift_size[1], shift_size[2]),
dims=(1, 2, 3),
)
else:
x = shifted_x
if pad_d1 > 0 or pad_r > 0 or pad_b > 0:
x = x[:, :D, :H, :W, :].contiguous()
return x, avg_attn
def forward_part2(self, x):
return self.drop_path(self.mlp(self.norm2(x)))
def forward(self, x, mask_matrix):
"""Forward function.
Args:
x: Input feature, tensor size (B, D, H, W, C).
mask_matrix: Attention mask for cyclic shift.
"""
shortcut = x
if not self.jump_attention:
if self.use_checkpoint:
x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix)
else:
x, avg_attn = self.forward_part1(x, mask_matrix)
x = shortcut + self.drop_path(x)
if self.use_checkpoint:
x = x + checkpoint.checkpoint(self.forward_part2, x)
else:
x = x + self.forward_part2(x)
return x, avg_attn
class PatchMerging(nn.Module):
"""Patch Merging Layer
Args:
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""Forward function.
Args:
x: Input feature, tensor size (B, D, H, W, C).
"""
B, D, H, W, C = x.shape
# padding
pad_input = (H % 2 == 1) or (W % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
x0 = x[:, :, 0::2, 0::2, :] # B D H/2 W/2 C
x1 = x[:, :, 1::2, 0::2, :] # B D H/2 W/2 C
x2 = x[:, :, 0::2, 1::2, :] # B D H/2 W/2 C
x3 = x[:, :, 1::2, 1::2, :] # B D H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B D H/2 W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
# cache each stage results
@lru_cache()
def compute_mask(D, H, W, window_size, shift_size, device):
img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1
cnt = 0
for d in (
slice(-window_size[0]),
slice(-window_size[0], -shift_size[0]),
slice(-shift_size[0], None),
):
for h in (
slice(-window_size[1]),
slice(-window_size[1], -shift_size[1]),
slice(-shift_size[1], None),
):
for w in (
slice(-window_size[2]),
slice(-window_size[2], -shift_size[2]),
slice(-shift_size[2], None),
):
img_mask[:, d, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, window_size) # nW, ws[0]*ws[1]*ws[2], 1
mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2]
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
attn_mask == 0, float(0.0)
)
return attn_mask
class BasicLayer(nn.Module):
"""A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of feature channels
depth (int): Depths of this stage.
num_heads (int): Number of attention head.
window_size (tuple[int]): Local window size. Default: (1,7,7).
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
"""
def __init__(
self,
dim,
depth,
num_heads,
window_size=(1, 7, 7),
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False,
jump_attention=False,
frag_bias=False,
):
super().__init__()
self.window_size = window_size
self.shift_size = tuple(i // 2 for i in window_size)
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList(
[
SwinTransformerBlock3D(
dim=dim,
num_heads=num_heads,
window_size=window_size,
shift_size=(0, 0, 0) if (i % 2 == 0) else self.shift_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i]
if isinstance(drop_path, list)
else drop_path,
norm_layer=norm_layer,
use_checkpoint=use_checkpoint,
jump_attention=jump_attention,
frag_bias=frag_bias,
)
for i in range(depth)
]
)
self.downsample = downsample
if self.downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
def forward(self, x):
"""Forward function.
Args:
x: Input feature, tensor size (B, C, D, H, W).
"""
# calculate attention mask for SW-MSA
B, C, D, H, W = x.shape
window_size, shift_size = get_window_size(
(D, H, W), self.window_size, self.shift_size
)
x = rearrange(x, "b c d h w -> b d h w c")
Dp = int(np.ceil(D / window_size[0])) * window_size[0]
Hp = int(np.ceil(H / window_size[1])) * window_size[1]
Wp = int(np.ceil(W / window_size[2])) * window_size[2]
attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device)
avg_attns = []
for blk in self.blocks:
x, avg_attn = blk(x, attn_mask)
if avg_attn is not None:
avg_attns.append(avg_attn)
x = x.view(B, D, H, W, -1)
if self.downsample is not None:
x = self.downsample(x)
x = rearrange(x, "b d h w c -> b c d h w")
return x, avg_attns
class PatchEmbed3D(nn.Module):
"""Video to Patch Embedding.
Args:
patch_size (int): Patch token size. Default: (2,4,4).
in_chans (int): Number of input video channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, patch_size=(2, 4, 4), in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv3d(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
# padding
_, _, D, H, W = x.size()
if W % self.patch_size[2] != 0:
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
if H % self.patch_size[1] != 0:
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
if D % self.patch_size[0] != 0:
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))
x = self.proj(x) # B C D Wh Ww
if self.norm is not None:
D, Wh, Ww = x.size(2), x.size(3), x.size(4)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
return x
class SwinTransformer3D(nn.Module):
"""Swin Transformer backbone.
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
patch_size (int | tuple(int)): Patch size. Default: (4,4,4).
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
depths (tuple[int]): Depths of each Swin Transformer stage.
num_heads (tuple[int]): Number of attention head of each stage.
window_size (int): Window size. Default: 7.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: Truee
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
drop_rate (float): Dropout rate.
attn_drop_rate (float): Attention dropout rate. Default: 0.
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
norm_layer: Normalization layer. Default: nn.LayerNorm.
patch_norm (bool): If True, add normalization after patch embedding. Default: False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.
"""
def __init__(
self,
pretrained=None,
pretrained2d=False,
patch_size=(2, 4, 4),
in_chans=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=(8, 7, 7),
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_layer=nn.LayerNorm,
patch_norm=True,
frozen_stages=-1,
use_checkpoint=True,
jump_attention=[False, False, False, False],
frag_biases=[True, True, True, False],
):
super().__init__()
print(frag_biases)
self.pretrained = pretrained
self.pretrained2d = pretrained2d
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.patch_norm = patch_norm
self.frozen_stages = frozen_stages
self.window_size = window_size
self.patch_size = patch_size
# split image into non-overlapping patches
self.patch_embed = PatchEmbed3D(
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None,
)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(embed_dim * 2 ** i_layer),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if i_layer < self.num_layers - 1 else None,
use_checkpoint=use_checkpoint,
jump_attention=jump_attention[i_layer],
frag_bias=frag_biases[i_layer],
)
self.layers.append(layer)
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
# add a norm layer for each output
self.norm = norm_layer(self.num_features)
self._freeze_stages()
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.frozen_stages >= 1:
self.pos_drop.eval()
for i in range(0, self.frozen_stages):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
def inflate_weights(self, logger):
"""Inflate the swin2d parameters to swin3d.
The differences between swin3d and swin2d mainly lie in an extra
axis. To utilize the pretrained parameters in 2d model,
the weight of swin2d models should be inflated to fit in the shapes of
the 3d counterpart.
Args:
logger (logging.Logger): The logger used to print
debugging infomation.
"""
checkpoint = torch.load(self.pretrained, map_location="cpu")
state_dict = checkpoint["model"]
# delete relative_position_index since we always re-init it
relative_position_index_keys = [
k for k in state_dict.keys() if "relative_position_index" in k
]
for k in relative_position_index_keys:
del state_dict[k]
# delete attn_mask since we always re-init it
attn_mask_keys = [k for k in state_dict.keys() if "attn_mask" in k]
for k in attn_mask_keys:
del state_dict[k]
state_dict["patch_embed.proj.weight"] = (
state_dict["patch_embed.proj.weight"]
.unsqueeze(2)
.repeat(1, 1, self.patch_size[0], 1, 1)
/ self.patch_size[0]
)
# bicubic interpolate relative_position_bias_table if not match
relative_position_bias_table_keys = [
k for k in state_dict.keys() if "relative_position_bias_table" in k
]
for k in relative_position_bias_table_keys:
relative_position_bias_table_pretrained = state_dict[k]
relative_position_bias_table_current = self.state_dict()[k]
L1, nH1 = relative_position_bias_table_pretrained.size()
L2, nH2 = relative_position_bias_table_current.size()
L2 = (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
wd = self.window_size[0]
if nH1 != nH2:
logger.warning(f"Error in loading {k}, passing")
else:
if L1 != L2:
S1 = int(L1 ** 0.5)
relative_position_bias_table_pretrained_resized = torch.nn.functional.interpolate(
relative_position_bias_table_pretrained.permute(1, 0).view(
1, nH1, S1, S1
),
size=(
2 * self.window_size[1] - 1,
2 * self.window_size[2] - 1,
),
mode="bicubic",
)
relative_position_bias_table_pretrained = relative_position_bias_table_pretrained_resized.view(
nH2, L2
).permute(
1, 0
)
state_dict[k] = relative_position_bias_table_pretrained.repeat(
2 * wd - 1, 1
)
msg = self.load_state_dict(state_dict, strict=False)
logger.info(msg)
logger.info(f"=> loaded successfully '{self.pretrained}'")
del checkpoint
torch.cuda.empty_cache()
def load_checkpoint(self, load_path, strict=False):
from collections import OrderedDict
model_state_dict = self.state_dict()
state_dict = torch.load(load_path)["state_dict"]
clean_dict = OrderedDict()
for key, value in state_dict.items():
if "backbone" in key:
clean_key = key[9:]
clean_dict[clean_key] = value
if "relative_position_bias_table" in clean_key:
forked_key = clean_key.replace(
"relative_position_bias_table", "fragment_position_bias_table"
)
if forked_key in clean_dict:
print(
f"Passing key {forked_key} as it is already in state_dict."
)
else:
clean_dict[forked_key] = value
## Only Support for 2X
for key, value in model_state_dict.items():
if key in clean_dict:
if value.shape != clean_dict[key].shape:
clean_dict.pop(key)
self.load_state_dict(clean_dict, strict=strict)
def init_weights(self, pretrained=None):
print(self.pretrained, self.pretrained2d)
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
def _init_weights(m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
if pretrained:
self.pretrained = pretrained
if isinstance(self.pretrained, str):
self.apply(_init_weights)
logger = get_root_logger()
logger.info(f"load model from: {self.pretrained}")
if self.pretrained2d:
# Inflate 2D model into 3D model.
self.inflate_weights(logger)
else:
# Directly load 3D model.
self.load_checkpoint(self.pretrained, strict=False) # , logger=logger)
elif self.pretrained is None:
self.apply(_init_weights)
else:
raise TypeError("pretrained must be a str or None")
def forward(self, x, multi=False, require_attn=False):
"""Forward function."""
x = self.patch_embed(x)
x = self.pos_drop(x)
if multi:
feats = [x]
for layer in self.layers:
x, avg_attns = layer(x.contiguous())
if multi:
feats += [x]
x = rearrange(x, "n c d h w -> n d h w c")
x = self.norm(x)
x = rearrange(x, "n d h w c -> n c d h w")
if multi:
x = feats[:-1] + [x]
else:
x = x
if require_attn:
return x, avg_attns
else:
return x
def train(self, mode=True):
"""Convert the model into training mode while keep layers freezed."""
super(SwinTransformer3D, self).train(mode)
self._freeze_stages()
|