Spaces:
vztu
/
Runtime error

File size: 21,005 Bytes
feb2918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
import torch

import cv2
import random
import os.path as osp
import argparse
from scipy.stats import spearmanr, pearsonr
from scipy.stats.stats import kendalltau as kendallr
import numpy as np
from time import time
from tqdm import tqdm
import pickle
import math
import wandb
import yaml
from collections import OrderedDict

from functools import reduce
from thop import profile
import copy


import cover.models as models
import cover.datasets as datasets


def train_test_split(dataset_path, ann_file, ratio=0.8, seed=42):
    random.seed(seed)
    print(seed)
    video_infos = []
    with open(ann_file, "r") as fin:
        for line in fin.readlines():
            line_split = line.strip().split(",")
            filename, _, _, label = line_split
            label = float(label)
            filename = osp.join(dataset_path, filename)
            video_infos.append(dict(filename=filename, label=label))
    random.shuffle(video_infos)
    return (
        video_infos[: int(ratio * len(video_infos))],
        video_infos[int(ratio * len(video_infos)) :],
    )


def rank_loss(y_pred, y):
    ranking_loss = torch.nn.functional.relu(
        (y_pred - y_pred.t()) * torch.sign((y.t() - y))
    )
    scale = 1 + torch.max(ranking_loss)
    return (
        torch.sum(ranking_loss) / y_pred.shape[0] / (y_pred.shape[0] - 1) / scale
    ).float()


def gaussian(y, eps=1e-8):
    return (y - y.mean()) / (y.std() + 1e-8)


def plcc_loss(y_pred, y):
    sigma_hat, m_hat = torch.std_mean(y_pred, unbiased=False)
    y_pred = (y_pred - m_hat) / (sigma_hat + 1e-8)
    sigma, m = torch.std_mean(y, unbiased=False)
    y = (y - m) / (sigma + 1e-8)
    loss0 = torch.nn.functional.mse_loss(y_pred, y) / 4
    rho = torch.mean(y_pred * y)
    loss1 = torch.nn.functional.mse_loss(rho * y_pred, y) / 4
    return ((loss0 + loss1) / 2).float()


def rescaled_l2_loss(y_pred, y):
    y_pred_rs = (y_pred - y_pred.mean()) / y_pred.std()
    y_rs = (y - y.mean()) / (y.std() + eps)
    return torch.nn.functional.mse_loss(y_pred_rs, y_rs)


def rplcc_loss(y_pred, y, eps=1e-8):
    ## Literally (1 - PLCC) / 2
    y_pred, y = gaussian(y_pred), gaussian(y)
    cov = torch.sum(y_pred * y) / y_pred.shape[0]
    # std = (torch.std(y_pred) + eps) * (torch.std(y) + eps)
    return (1 - cov) / 2


def self_similarity_loss(f, f_hat, f_hat_detach=False):
    if f_hat_detach:
        f_hat = f_hat.detach()
    return 1 - torch.nn.functional.cosine_similarity(f, f_hat, dim=1).mean()


def contrastive_similarity_loss(f, f_hat, f_hat_detach=False, eps=1e-8):
    if f_hat_detach:
        f_hat = f_hat.detach()
    intra_similarity = torch.nn.functional.cosine_similarity(f, f_hat, dim=1).mean()
    cross_similarity = torch.nn.functional.cosine_similarity(f, f_hat, dim=0).mean()
    return (1 - intra_similarity) / (1 - cross_similarity + eps)


def rescale(pr, gt=None):
    if gt is None:
        pr = (pr - np.mean(pr)) / np.std(pr)
    else:
        pr = ((pr - np.mean(pr)) / np.std(pr)) * np.std(gt) + np.mean(gt)
    return pr

sample_types = ["semantic", "technical", "aesthetic"]


def finetune_epoch(
    ft_loader,
    model,
    model_ema,
    optimizer,
    scheduler,
    device,
    epoch=-1,
    need_upsampled=False,
    need_feat=False,
    need_fused=False,
    need_separate_sup=True,
):
    model.train()
    for i, data in enumerate(tqdm(ft_loader, desc=f"Training in epoch {epoch}")):
        optimizer.zero_grad()
        video = {}
        for key in sample_types:
            if key in data:
                video[key] = data[key].to(device)

        y = data["gt_label"].float().detach().to(device).unsqueeze(-1)

        scores = model(video, inference=False, reduce_scores=False)
        if len(scores) > 1:
            y_pred = reduce(lambda x, y: x + y, scores)
        else:
            y_pred = scores[0]
        y_pred = y_pred.mean((-3, -2, -1))

        frame_inds = data["frame_inds"]


        loss = 0  # p_loss + 0.3 * r_loss

        if need_separate_sup:
            p_loss_a = plcc_loss(scores[0].mean((-3, -2, -1)), y)
            p_loss_b = plcc_loss(scores[1].mean((-3, -2, -1)), y)
            p_loss_c = plcc_loss(scores[2].mean((-3, -2, -1)), y)
            r_loss_a = rank_loss(scores[0].mean((-3, -2, -1)), y)
            r_loss_b = rank_loss(scores[1].mean((-3, -2, -1)), y)
            r_loss_c = rank_loss(scores[2].mean((-3, -2, -1)), y)
            loss += (
                p_loss_a + p_loss_b + p_loss_c + 0.3 * r_loss_a + 0.3 * r_loss_b + 0.3 * r_loss_c
            )  # + 0.2 * o_loss
            wandb.log(
                {
                    "train/plcc_loss_a": p_loss_a.item(),
                    "train/plcc_loss_b": p_loss_b.item(),
                    "train/plcc_loss_c": p_loss_c.item(),
                }
            )

        wandb.log(
            {"train/total_loss": loss.item(),}
        )

        loss.backward()
        optimizer.step()
        scheduler.step()

        # ft_loader.dataset.refresh_hypers()

        if model_ema is not None:
            model_params = dict(model.named_parameters())
            model_ema_params = dict(model_ema.named_parameters())
            for k in model_params.keys():
                model_ema_params[k].data.mul_(0.999).add_(
                    model_params[k].data, alpha=1 - 0.999
                )
    model.eval()


def profile_inference(inf_set, model, device):
    video = {}
    data = inf_set[0]
    for key in sample_types:
        if key in data:
            video[key] = data[key].to(device).unsqueeze(0)
    with torch.no_grad():

        flops, params = profile(model, (video,))
    print(
        f"The FLOps of the Variant is {flops/1e9:.1f}G, with Params {params/1e6:.2f}M."
    )


def inference_set(
    inf_loader,
    model,
    device,
    best_,
    save_model=False,
    suffix="s",
    save_name="divide",
    save_type="head",
):

    results = []

    best_s, best_p, best_k, best_r = best_

    for i, data in enumerate(tqdm(inf_loader, desc="Validating")):
        result = dict()
        video, video_up = {}, {}
        for key in sample_types:
            if key in data:
                video[key] = data[key].to(device)
                ## Reshape into clips
                b, c, t, h, w = video[key].shape
                video[key] = (
                    video[key]
                    .reshape(
                        b, c, data["num_clips"][key], t // data["num_clips"][key], h, w
                    )
                    .permute(0, 2, 1, 3, 4, 5)
                    .reshape(
                        b * data["num_clips"][key], c, t // data["num_clips"][key], h, w
                    )
                )
            if key + "_up" in data:
                video_up[key] = data[key + "_up"].to(device)
                ## Reshape into clips
                b, c, t, h, w = video_up[key].shape
                video_up[key] = (
                    video_up[key]
                    .reshape(b, c, data["num_clips"], t // data["num_clips"], h, w)
                    .permute(0, 2, 1, 3, 4, 5)
                    .reshape(b * data["num_clips"], c, t // data["num_clips"], h, w)
                )
            # .unsqueeze(0)
        with torch.no_grad():
            result["pr_labels"] = model(video, reduce_scores=True).cpu().numpy()
            if len(list(video_up.keys())) > 0:
                result["pr_labels_up"] = model(video_up).cpu().numpy()

        result["gt_label"] = data["gt_label"].item()
        del video, video_up
        results.append(result)

    ## generate the demo video for video quality localization
    gt_labels = [r["gt_label"] for r in results]
    pr_labels = [np.mean(r["pr_labels"][:]) for r in results]
    pr_labels = rescale(pr_labels, gt_labels)

    s = spearmanr(gt_labels, pr_labels)[0]
    p = pearsonr(gt_labels, pr_labels)[0]
    k = kendallr(gt_labels, pr_labels)[0]
    r = np.sqrt(((gt_labels - pr_labels) ** 2).mean())

    wandb.log(
        {
            f"val_{suffix}/SRCC-{suffix}": s,
            f"val_{suffix}/PLCC-{suffix}": p,
            f"val_{suffix}/KRCC-{suffix}": k,
            f"val_{suffix}/RMSE-{suffix}": r,
        }
    )

    del results, result  # , video, video_up
    torch.cuda.empty_cache()

    if s + p > best_s + best_p and save_model:
        state_dict = model.state_dict()

        if save_type == "head":
            head_state_dict = OrderedDict()
            for key, v in state_dict.items():
                if "backbone" in key:
                    continue
                else:
                    head_state_dict[key] = v
            print("Following keys are saved :", head_state_dict.keys())
            torch.save(
                {"state_dict": head_state_dict, "validation_results": best_,},
                f"pretrained_weights/{save_name}_{suffix}_finetuned.pth",
            )
        else:
            torch.save(
                {"state_dict": state_dict, "validation_results": best_,},
                f"pretrained_weights/{save_name}_{suffix}_finetuned.pth",
            )

    best_s, best_p, best_k, best_r = (
        max(best_s, s),
        max(best_p, p),
        max(best_k, k),
        min(best_r, r),
    )

    wandb.log(
        {
            f"val_{suffix}/best_SRCC-{suffix}": best_s,
            f"val_{suffix}/best_PLCC-{suffix}": best_p,
            f"val_{suffix}/best_KRCC-{suffix}": best_k,
            f"val_{suffix}/best_RMSE-{suffix}": best_r,
        }
    )

    print(
        f"For {len(inf_loader)} videos, \nthe accuracy of the model: [{suffix}] is as follows:\n  SROCC: {s:.4f} best: {best_s:.4f} \n  PLCC:  {p:.4f} best: {best_p:.4f}  \n  KROCC: {k:.4f} best: {best_k:.4f} \n  RMSE:  {r:.4f} best: {best_r:.4f}."
    )

    return best_s, best_p, best_k, best_r

    # torch.save(results, f'{args.save_dir}/results_{dataset.lower()}_s{32}*{32}_ens{args.famount}.pkl')


def main():

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-o", "--opt", type=str, default="cover.yml", help="the option file"
    )

    parser.add_argument(
        "-t", "--target_set", type=str, default="val-kv1k", help="target_set"
    )

    parser.add_argument('-n', "--name", type=str, default="COVER_TMP", help='model name to save checkpoint')
    parser.add_argument('-uh', "--usehead", type=int, default=0, help='wheather to load header weight from checkpoint')

    args = parser.parse_args()
    with open(args.opt, "r") as f:
        opt = yaml.safe_load(f)
    print(opt)

    ## adaptively choose the device

    device = "cuda" if torch.cuda.is_available() else "cpu"

    ## defining model and loading checkpoint

    bests_ = []

    if opt.get("split_seed", -1) > 0:
        num_splits = 10
    else:
        num_splits = 1

    print(opt["split_seed"])

    for split in range(10):
        model = getattr(models, opt["model"]["type"])(**opt["model"]["args"]).to(device)
        if opt.get("split_seed", -1) > 0:
            opt["data"]["train"] = copy.deepcopy(opt["data"][args.target_set])
            opt["data"]["eval"] = copy.deepcopy(opt["data"][args.target_set])

            split_duo = train_test_split(
                opt["data"][args.target_set]["args"]["data_prefix"],
                opt["data"][args.target_set]["args"]["anno_file"],
                seed=opt["split_seed"] * (split + 1),
            )
            (
                opt["data"]["train"]["args"]["anno_file"],
                opt["data"]["eval"]["args"]["anno_file"],
            ) = split_duo
            opt["data"]["train"]["args"]["sample_types"]["technical"]["num_clips"] = 1

        train_datasets = {}
        for key in opt["data"]:
            if key.startswith("train"):
                train_dataset = getattr(datasets, opt["data"][key]["type"])(
                    opt["data"][key]["args"]
                )
                train_datasets[key] = train_dataset
                print(len(train_dataset.video_infos))

        train_loaders = {}
        for key, train_dataset in train_datasets.items():
            train_loaders[key] = torch.utils.data.DataLoader(
                train_dataset,
                batch_size=opt["batch_size"],
                num_workers=opt["num_workers"],
                shuffle=True,
            )

        val_datasets = {}
        for key in opt["data"]:
            if key.startswith("eval"):
                val_dataset = getattr(datasets, opt["data"][key]["type"])(
                    opt["data"][key]["args"]
                )
                print(len(val_dataset.video_infos))
                val_datasets[key] = val_dataset

        val_loaders = {}
        for key, val_dataset in val_datasets.items():
            val_loaders[key] = torch.utils.data.DataLoader(
                val_dataset,
                batch_size=1,
                num_workers=opt["num_workers"],
                pin_memory=True,
            )

        run = wandb.init(
            project=opt["wandb"]["project_name"],
            name=opt["name"] + f"_target_{args.target_set}_split_{split}"
            if num_splits > 1
            else opt["name"],
            reinit=True,
            settings=wandb.Settings(start_method="thread"),
        )

        state_dict = torch.load(opt["test_load_path"], map_location=device)

        # Load fine_tuned header from checkpoint
        if args.usehead:
            state_dict_head = torch.load(opt["test_load_header_path"], map_location=device)
            for key in state_dict_head['state_dict'].keys():
                state_dict[key] = state_dict_head['state_dict'][key]

        # Allowing empty head weight
        model.load_state_dict(state_dict, strict=False)

        if opt["ema"]:
            from copy import deepcopy

            model_ema = deepcopy(model)
        else:
            model_ema = None

        # profile_inference(val_dataset, model, device)

        # finetune the model

        param_groups = []

        for key, value in dict(model.named_children()).items():
            if "backbone" in key:
                param_groups += [
                    {
                        "params": value.parameters(),
                        "lr": opt["optimizer"]["lr"]
                        * opt["optimizer"]["backbone_lr_mult"],
                    }
                ]
            else:
                param_groups += [
                    {"params": value.parameters(), "lr": opt["optimizer"]["lr"]}
                ]

        optimizer = torch.optim.AdamW(
            lr=opt["optimizer"]["lr"],
            params=param_groups,
            weight_decay=opt["optimizer"]["wd"],
        )
        warmup_iter = 0
        for train_loader in train_loaders.values():
            warmup_iter += int(opt["warmup_epochs"] * len(train_loader))
        max_iter = int((opt["num_epochs"] + opt["l_num_epochs"]) * len(train_loader))
        lr_lambda = (
            lambda cur_iter: cur_iter / warmup_iter
            if cur_iter <= warmup_iter
            else 0.5 * (1 + math.cos(math.pi * (cur_iter - warmup_iter) / max_iter))
        )

        scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda,)

        bests = {}
        bests_n = {}
        for key in val_loaders:
            bests[key] = -1, -1, -1, 1000
            bests_n[key] = -1, -1, -1, 1000

        for key, value in dict(model.named_children()).items():
            if "backbone" in key:
                for param in value.parameters():
                    param.requires_grad = False

        for epoch in range(opt["l_num_epochs"]):
            print(f"Linear Epoch {epoch}:")
            for key, train_loader in train_loaders.items():
                finetune_epoch(
                    train_loader,
                    model,
                    model_ema,
                    optimizer,
                    scheduler,
                    device,
                    epoch,
                    opt.get("need_upsampled", False),
                    opt.get("need_feat", False),
                    opt.get("need_fused", False),
                )
            for key in val_loaders:
                bests[key] = inference_set(
                    val_loaders[key],
                    model_ema if model_ema is not None else model,
                    device,
                    bests[key],
                    save_model=opt["save_model"],
                    save_name=args.name + "_head_" + args.target_set + f"_{split}",
                    suffix=key + "_s",
                )
                if model_ema is not None:
                    bests_n[key] = inference_set(
                        val_loaders[key],
                        model,
                        device,
                        bests_n[key],
                        save_model=opt["save_model"],
                        save_name=args.name
                        + "_head_"
                        + args.target_set
                        + f"_{split}",
                        suffix=key + "_n",
                    )
                else:
                    bests_n[key] = bests[key]

        if opt["l_num_epochs"] >= 0:
            for key in val_loaders:
                print(
                    f"""For the linear transfer process on {key} with {len(val_loaders[key])} videos,
                    the best validation accuracy of the model-s is as follows:
                    SROCC: {bests[key][0]:.4f}
                    PLCC:  {bests[key][1]:.4f}
                    KROCC: {bests[key][2]:.4f}
                    RMSE:  {bests[key][3]:.4f}."""
                )

                print(
                    f"""For the linear transfer process on {key} with {len(val_loaders[key])} videos,
                    the best validation accuracy of the model-n is as follows:
                    SROCC: {bests_n[key][0]:.4f}
                    PLCC:  {bests_n[key][1]:.4f}
                    KROCC: {bests_n[key][2]:.4f}
                    RMSE:  {bests_n[key][3]:.4f}."""
                )

        for key, value in dict(model.named_children()).items():
            if "backbone" in key:
                for param in value.parameters():
                    param.requires_grad = True

        for epoch in range(opt["num_epochs"]):
            print(f"End-to-end Epoch {epoch}:")
            for key, train_loader in train_loaders.items():
                finetune_epoch(
                    train_loader,
                    model,
                    model_ema,
                    optimizer,
                    scheduler,
                    device,
                    epoch,
                    opt.get("need_upsampled", False),
                    opt.get("need_feat", False),
                    opt.get("need_fused", False),
                )
            for key in val_loaders:
                bests[key] = inference_set(
                    val_loaders[key],
                    model_ema if model_ema is not None else model,
                    device,
                    bests[key],
                    save_model=opt["save_model"],
                    save_name=args.name + "_head_" + args.target_set + f"_{split}",
                    suffix=key + "_s",
                    save_type="full",
                )
                if model_ema is not None:
                    bests_n[key] = inference_set(
                        val_loaders[key],
                        model,
                        device,
                        bests_n[key],
                        save_model=opt["save_model"],
                        save_name=args.name
                        + "_head_"
                        + args.target_set
                        + f"_{split}",
                        suffix=key + "_n",
                        save_type="full",
                    )
                else:
                    bests_n[key] = bests[key]

        if opt["num_epochs"] >= 0:
            for key in val_loaders:
                print(
                    f"""For the end-to-end transfer process on {key} with {len(val_loaders[key])} videos,
                    the best validation accuracy of the model-s is as follows:
                    SROCC: {bests[key][0]:.4f}
                    PLCC:  {bests[key][1]:.4f}
                    KROCC: {bests[key][2]:.4f}
                    RMSE:  {bests[key][3]:.4f}."""
                )

                print(
                    f"""For the end-to-end transfer process on {key} with {len(val_loaders[key])} videos,
                    the best validation accuracy of the model-n is as follows:
                    SROCC: {bests_n[key][0]:.4f}
                    PLCC:  {bests_n[key][1]:.4f}
                    KROCC: {bests_n[key][2]:.4f}
                    RMSE:  {bests_n[key][3]:.4f}."""
                )

        for key, value in dict(model.named_children()).items():
            if "backbone" in key:
                for param in value.parameters():
                    param.requires_grad = True

        run.finish()


if __name__ == "__main__":
    main()