Spaces:
Running
Running
File size: 7,388 Bytes
6877edc da0e3ab 73fd4c0 6877edc 73fd4c0 fbd6bad 73fd4c0 ae3f094 d20794a 6877edc fc61926 73fd4c0 aa9bb98 7ac5c7d 6877edc fbd6bad 7ac5c7d fbd6bad b6ee570 6877edc b6ee570 6877edc b6ee570 6877edc b6ee570 6877edc 7ac5c7d d0817ad 2275971 79ce0ab 6877edc 80b43a8 10ac59a 6877edc 7ac5c7d 6877edc 233c677 6877edc 7ac5c7d 6877edc b6ee570 7ac5c7d 79ce0ab 6877edc 04fc8d0 2ea769d 6877edc 2ea769d 6877edc 233c677 07fdf2c 6877edc 8f926f6 80b43a8 6f11b02 349cabe 6877edc 349cabe 232ad15 6877edc 80b43a8 6877edc 80b43a8 6877edc 7ac5c7d 80b43a8 6877edc 7ac5c7d 3364e9c 6877edc 3364e9c 6877edc 3364e9c 6312799 73fd4c0 3364e9c c08470b b062f63 6877edc 73fd4c0 3364e9c c3f9f52 98a98e1 c3f9f52 73fd4c0 7ac5c7d 3364e9c 4bc5468 6877edc 4bc5468 83015b3 6877edc 4bc5468 5d311f1 4bc5468 7ac5c7d 6877edc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import spaces
import tempfile
import gradio as gr
import subprocess
import os, stat
import uuid
from googletrans import Translator
from TTS.api import TTS
from faster_whisper import WhisperModel
import soundfile as sf
import numpy as np
import cv2
from huggingface_hub import HfApi
import shlex
HF_TOKEN = os.environ.get("HF_TOKEN")
os.environ["COQUI_TOS_AGREED"] = "1"
api = HfApi(token=HF_TOKEN)
repo_id = "artificialguybr/video-dubbing"
# Whisper
model_size = "small"
model = WhisperModel(model_size, device="cpu", compute_type="int8")
def check_for_faces(video_path):
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
cap = cv2.VideoCapture(video_path)
while True:
ret, frame = cap.read()
if not ret:
break
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
if len(faces) > 0:
return True
return False
@spaces.GPU
def process_video(radio, video, target_language, has_closeup_face):
if target_language is None:
return gr.Error("Please select a Target Language for Dubbing.")
run_uuid = uuid.uuid4().hex[:6]
output_filename = f"{run_uuid}_resized_video.mp4"
# Use subprocess for ffmpeg operations
subprocess.run(["ffmpeg", "-i", video, "-vf", "scale=-2:720", output_filename])
video_path = output_filename
if not os.path.exists(video_path):
return f"Error: {video_path} does not exist."
# Check video duration
video_info = subprocess.check_output(["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", video_path])
video_duration = float(video_info)
if video_duration > 60:
os.remove(video_path)
return gr.Error("Video duration exceeds 1 minute. Please upload a shorter video.")
subprocess.run(["ffmpeg", "-i", video_path, "-acodec", "pcm_s24le", "-ar", "48000", "-map", "a", f"{run_uuid}_output_audio.wav"])
subprocess.run(["ffmpeg", "-y", "-i", f"{run_uuid}_output_audio.wav", "-af", "lowpass=3000,highpass=100", f"{run_uuid}_output_audio_final.wav"])
print("Attempting to transcribe with Whisper...")
try:
segments, info = model.transcribe(f"{run_uuid}_output_audio_final.wav", beam_size=5)
whisper_text = " ".join(segment.text for segment in segments)
whisper_language = info.language
print(f"Transcription successful: {whisper_text}")
except RuntimeError as e:
print(f"RuntimeError encountered: {str(e)}")
if "CUDA failed with error device-side assert triggered" in str(e):
gr.Warning("Error. Space need to restart. Please retry in a minute")
api.restart_space(repo_id=repo_id)
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
target_language_code = language_mapping[target_language]
translator = Translator()
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
print(translated_text)
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code)
if has_closeup_face:
try:
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio '{run_uuid}_output_synth.wav' --pads 0 15 0 0 --resize_factor 1 --nosmooth --outfile '{run_uuid}_output_video.mp4'"
subprocess.run(cmd, shell=True, check=True)
except subprocess.CalledProcessError as e:
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
subprocess.run(["ffmpeg", "-i", video_path, "-i", f"{run_uuid}_output_synth.wav", "-c:v", "copy", "-c:a", "aac", "-strict", "experimental", "-map", "0:v:0", "-map", "1:a:0", f"{run_uuid}_output_video.mp4"])
else:
subprocess.run(["ffmpeg", "-i", video_path, "-i", f"{run_uuid}_output_synth.wav", "-c:v", "copy", "-c:a", "aac", "-strict", "experimental", "-map", "0:v:0", "-map", "1:a:0", f"{run_uuid}_output_video.mp4"])
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
output_video_path = f"{run_uuid}_output_video.mp4"
# Cleanup
files_to_delete = [
f"{run_uuid}_resized_video.mp4",
f"{run_uuid}_output_audio.wav",
f"{run_uuid}_output_audio_final.wav",
f"{run_uuid}_output_synth.wav"
]
for file in files_to_delete:
try:
os.remove(file)
except FileNotFoundError:
print(f"File {file} not found for deletion.")
return output_video_path
def swap(radio):
if(radio == "Upload"):
return gr.update(source="upload")
else:
return gr.update(source="webcam")
video = gr.Video()
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
iface = gr.Interface(
fn=process_video,
inputs=[
radio,
video,
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
gr.Checkbox(
label="Video has a close-up face. Use Wav2lip.",
value=False,
info="Say if video have close-up face. For Wav2lip. Will not work if checked wrongly.")
],
outputs=gr.Video(),
live=False,
title="AI Video Dubbing",
description="""This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr) using entirely open-source tools. Special thanks to Hugging Face for the GPU support. Thanks [@yeswondwer](https://twitter.com/@yeswondwerr) for original code. Test the [Video Transcription and Translate](https://huggingface.co/spaces/artificialguybr/VIDEO-TRANSLATION-TRANSCRIPTION) space!""",
allow_flagging=False
)
with gr.Blocks() as demo:
iface.render()
radio.change(swap, inputs=[radio], outputs=video)
gr.Markdown("""
**Note:**
- Video limit is 1 minute. It will dubbing all people using just one voice.
- Generation may take up to 5 minutes.
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
- The tool uses open-source models for all models. It's an alpha version.
- Quality can be improved but would require more processing time per video. For scalability and hardware limitations, speed was chosen, not just quality.
- If you need more than 1 minute, duplicate the Space and change the limit on app.py.
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
""")
demo.queue(concurrency_count=1, max_size=15)
demo.launch()
|