Spaces:
Runtime error
Runtime error
File size: 8,207 Bytes
66061aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import pandas as pd
import pdb
import json
from rdkit import Chem
def count_substructures(radius,molecule):
"""Helper function for get the information of molecular signature of a
metabolite. The relaxed signature requires the number of each substructure
to construct a matrix for each molecule.
Parameters
----------
radius : int
the radius is bond-distance that defines how many neighbor atoms should
be considered in a reaction center.
molecule : Molecule
a molecule object create by RDkit (e.g. Chem.MolFromInchi(inchi_code)
or Chem.MolToSmiles(smiles_code))
Returns
-------
dict
dictionary of molecular signature for a molecule,
{smiles: molecular_signature}
"""
m = molecule
smi_count = dict()
atomList = [atom for atom in m.GetAtoms()]
for i in range(len(atomList)):
env = Chem.FindAtomEnvironmentOfRadiusN(m,radius,i)
atoms=set()
for bidx in env:
atoms.add(m.GetBondWithIdx(bidx).GetBeginAtomIdx())
atoms.add(m.GetBondWithIdx(bidx).GetEndAtomIdx())
# only one atom is in this environment, such as O in H2O
if len(atoms) == 0:
atoms = {i}
smi = Chem.MolFragmentToSmiles(m,atomsToUse=list(atoms),
bondsToUse=env,canonical=True)
if smi in smi_count:
smi_count[smi] = smi_count[smi] + 1
else:
smi_count[smi] = 1
return smi_count
def decompse_ac(db_smiles,radius=1):
non_decomposable = []
decompose_vector = dict()
for cid in db_smiles:
# print cid
smiles_pH7 = db_smiles[cid]
try:
mol = Chem.MolFromSmiles(smiles_pH7)
mol = Chem.RemoveHs(mol)
# Chem.RemoveStereochemistry(mol)
smi_count = count_substructures(radius,mol)
decompose_vector[cid] = smi_count
except Exception as e:
non_decomposable.append(cid)
with open('./data/decompose_vector_ac.json','w') as fp:
json.dump(decompose_vector,fp)
def get_rxn_rule():
"""calculate reaction rules based on the relaxed molecular signatures.
Parameters
----------
radius : int
the radius is bond-distance that defines how many neighbor atoms should
be considered in a reaction center.
Returns
-------
None
All of the reaction rules are saved in files (csv file)
"""
reaction_dict = json.load(open('./data/optstoic_v3_Sji_dict.json'))
molecular_signature = json.load(open('./data/decompose_vector_ac.json'))
molsigna_df = pd.DataFrame.from_dict(molecular_signature).fillna(0)
all_mets = molsigna_df.columns.tolist()
all_mets.append("C00080")
all_mets.append("C00282")
rule_df = pd.DataFrame(index=molsigna_df.index)
for rid, value in list(reaction_dict.items()):
# skip the reactions with missing metabolites
mets = list(value.keys())
flag = False
for met in mets:
if met not in all_mets:
flag = True
break
if flag: continue
rule_df[rid] = 0
for met, stoic in list(value.items()):
if met == "C00080" or met == "C00282":
continue # hydogen is zero
rule_df[rid] += molsigna_df[met] * stoic
rule_df.to_csv("./data/reaction_rule.csv", index=True)
def get_rxn_rule_no_stero():
"""calculate reaction rules based on the relaxed molecular signatures.
Parameters
----------
radius : int
the radius is bond-distance that defines how many neighbor atoms should
be considered in a reaction center.
Returns
-------
None
All of the reaction rules are saved in files (csv file)
"""
reaction_dict = json.load(open('./data/optstoic_v3_Sji_dict.json'))
molecular_signature = json.load(open('./data/decompose_vector_ac_nostereo.json'))
molsigna_df = pd.DataFrame.from_dict(molecular_signature).fillna(0)
all_mets = molsigna_df.columns.tolist()
all_mets.append("C00080")
all_mets.append("C00282")
rule_df = pd.DataFrame(index=molsigna_df.index)
for rid, value in list(reaction_dict.items()):
# skip the reactions with missing metabolites
mets = list(value.keys())
flag = False
for met in mets:
if met not in all_mets:
flag = True
break
if flag: continue
rule_df[rid] = 0
for met, stoic in list(value.items()):
if met == "C00080" or met == "C00282":
continue # hydogen is zero
rule_df[rid] += molsigna_df[met] * stoic
rule_df.to_csv("./data/reaction_rule_no_stero.csv", index=True)
def get_rxn_rule_remove_TECRDB_mets():
"""calculate reaction rules based on the relaxed molecular signatures.
Parameters
----------
radius : int
the radius is bond-distance that defines how many neighbor atoms should
be considered in a reaction center.
Returns
-------
None
All of the reaction rules are saved in files (csv file)
"""
reaction_dict = json.load(open('./data/optstoic_v3_Sji_dict.json'))
molecular_signature = json.load(open('./data/decompose_vector_ac.json'))
molsigna_df = pd.DataFrame.from_dict(molecular_signature).fillna(0)
all_mets = molsigna_df.columns.tolist()
all_mets.append("C00080")
all_mets.append("C00282")
mets_TECRDB_df = pd.read_csv('./data/TECRBD_mets.txt',header=None)
mets_TECRDB = mets_TECRDB_df[0].tolist()
# pdb.set_trace()
all_mets = list(set(all_mets + mets_TECRDB))
rule_df = pd.DataFrame(index=molsigna_df.index)
for rid, value in list(reaction_dict.items()):
# skip the reactions with missing metabolites
mets = list(value.keys())
flag = False
for met in mets:
if met not in all_mets:
flag = True
break
if flag: continue
rule_df[rid] = 0
for met, stoic in list(value.items()):
if met in mets_TECRDB:
continue # hydogen is zero
rule_df[rid] += molsigna_df[met] * stoic
rule_df.to_csv("./data/reaction_rule_remove_TECRDB_mets.csv", index=True)
def get_rxn_rule_no_stero_remove_TECRDB_mets():
"""calculate reaction rules based on the relaxed molecular signatures.
Parameters
----------
radius : int
the radius is bond-distance that defines how many neighbor atoms should
be considered in a reaction center.
Returns
-------
None
All of the reaction rules are saved in files (csv file)
"""
reaction_dict = json.load(open('./data/optstoic_v3_Sji_dict.json'))
molecular_signature = json.load(open('./data/decompose_vector_ac_nostereo.json'))
molsigna_df = pd.DataFrame.from_dict(molecular_signature).fillna(0)
all_mets = molsigna_df.columns.tolist()
all_mets.append("C00080")
all_mets.append("C00282")
mets_TECRDB_df = pd.read_csv('./data/TECRBD_mets.txt',header=None)
mets_TECRDB = mets_TECRDB_df[0].tolist()
# pdb.set_trace()
all_mets = list(set(all_mets + mets_TECRDB))
rule_df = pd.DataFrame(index=molsigna_df.index)
for rid, value in list(reaction_dict.items()):
# skip the reactions with missing metabolites
mets = list(value.keys())
flag = False
for met in mets:
if met not in all_mets:
flag = True
break
if flag: continue
rule_df[rid] = 0
for met, stoic in list(value.items()):
if met in mets_TECRDB:
continue # hydogen is zero
rule_df[rid] += molsigna_df[met] * stoic
rule_df.to_csv("./data/reaction_rule_nostereo_remove_TECRDB_mets.csv", index=True)
if __name__ == '__main__':
# db = pd.read_csv('./data/cache_compounds_20160818.csv',index_col='compound_id')
# db_smiles = db['smiles_pH7'].to_dict()
# decompse_ac(db_smiles)
# get_rxn_rule()
# get_rxn_rule_remove_TECRDB_mets()
get_rxn_rule_no_stero_remove_TECRDB_mets() |