File size: 15,226 Bytes
66061aa
 
 
 
 
 
 
 
 
 
 
 
6d1bc76
 
 
 
 
 
f410cbd
6d1bc76
99c9ce8
6ea14f8
66061aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import streamlit as st
import pandas as pd
import numpy as np
import re
from PIL import Image
import webbrowser
import json
import pickle
import sys
import joblib
import sys

import os

try:
    from openbabel import openbabel
except:
    print ("openbabel not found, Installing openbabel ")
    os.system("conda install -c openbabel openbabel")
    from openbabel import openbabel


sys.path.append('./CC/')

import chemaxon
from chemaxon import *
from compound import Compound
from compound_cacher import CompoundCacher
from rdkit.Chem import rdChemReactions as Reactions
from rdkit.Chem import Draw
from rdkit import Chem

@st.cache(allow_output_mutation=True)
def load_smiles():
    db = pd.read_csv('./data/cache_compounds_20160818.csv',
                     index_col='compound_id')
    db_smiles = db['smiles_pH7'].to_dict()
    return db_smiles


@st.cache(allow_output_mutation=True)
def load_molsig_rad1():
    molecular_signature_r1 = json.load(open('./data/decompose_vector_ac.json'))
    return molecular_signature_r1


@st.cache(allow_output_mutation=True)
def load_molsig_rad2():
    molecular_signature_r2 = json.load(
        open('./data/decompose_vector_ac_r2_py3_indent_modified_manual.json'))
    return molecular_signature_r2


@st.cache(allow_output_mutation=True)
def load_model():
    filename = './model/M12_model_BR.pkl'
    loaded_model = joblib.load(open(filename, 'rb'))
    return loaded_model


@st.cache(allow_output_mutation=True)
def load_compound_cache():
    ccache = CompoundCacher()
    return ccache


def count_substructures(radius, molecule):
    """Helper function for get the information of molecular signature of a
    metabolite. The relaxed signature requires the number of each substructure
    to construct a matrix for each molecule.
    Parameters
    ----------
    radius : int
        the radius is bond-distance that defines how many neighbor atoms should
        be considered in a reaction center.
    molecule : Molecule
        a molecule object create by RDkit (e.g. Chem.MolFromInchi(inchi_code)
        or Chem.MolToSmiles(smiles_code))
    Returns
    -------
    dict
        dictionary of molecular signature for a molecule,
        {smiles: molecular_signature}
    """
    m = molecule
    smi_count = dict()
    atomList = [atom for atom in m.GetAtoms()]

    for i in range(len(atomList)):
        env = Chem.FindAtomEnvironmentOfRadiusN(m, radius, i)
        atoms = set()
        for bidx in env:
            atoms.add(m.GetBondWithIdx(bidx).GetBeginAtomIdx())
            atoms.add(m.GetBondWithIdx(bidx).GetEndAtomIdx())

        # only one atom is in this environment, such as O in H2O
        if len(atoms) == 0:
            atoms = {i}

        smi = Chem.MolFragmentToSmiles(m, atomsToUse=list(atoms),
                                       bondsToUse=env, canonical=True)

        if smi in smi_count:
            smi_count[smi] = smi_count[smi] + 1
        else:
            smi_count[smi] = 1
    return smi_count


def decompse_novel_mets_rad1(novel_smiles, radius=1):
    decompose_vector = dict()

    for cid, smiles_pH7 in novel_smiles.items():
        mol = Chem.MolFromSmiles(smiles_pH7)
        mol = Chem.RemoveHs(mol)
        # Chem.RemoveStereochemistry(mol)
        smi_count = count_substructures(radius, mol)
        decompose_vector[cid] = smi_count
    return decompose_vector


def decompse_novel_mets_rad2(novel_smiles, radius=2):
    decompose_vector = dict()

    for cid, smiles_pH7 in novel_smiles.items():
        mol = Chem.MolFromSmiles(smiles_pH7)
        mol = Chem.RemoveHs(mol)
        # Chem.RemoveStereochemistry(mol)
        smi_count = count_substructures(radius, mol)
        decompose_vector[cid] = smi_count
    return decompose_vector

# def parse_rule(rxn,df_rule):
#     df = df_rule
#     rule_df = df[rxn].to_frame()
#     # new_df = rule_df[(rule_df.T != 0).any()]

#     return rule_df[(rule_df.T != 0).any()]


def parse_reaction_formula_side(s):
    """
        Parses the side formula, e.g. '2 C00001 + C00002 + 3 C00003'
        Ignores stoichiometry.

        Returns:
            The set of CIDs.
    """
    if s.strip() == "null":
        return {}

    compound_bag = {}
    for member in re.split('\s+\+\s+', s):
        tokens = member.split(None, 1)
        if len(tokens) == 0:
            continue
        if len(tokens) == 1:
            amount = 1
            key = member
        else:
            amount = float(tokens[0])
            key = tokens[1]

        compound_bag[key] = compound_bag.get(key, 0) + amount

    return compound_bag


def parse_formula(formula, arrow='<=>', rid=None):
    """
        Parses a two-sided formula such as: 2 C00001 => C00002 + C00003

        Return:
            The set of substrates, products and the direction of the reaction
    """
    tokens = formula.split(arrow)
    if len(tokens) < 2:
        print(('Reaction does not contain the arrow sign (%s): %s'
               % (arrow, formula)))
    if len(tokens) > 2:
        print(('Reaction contains more than one arrow sign (%s): %s'
               % (arrow, formula)))

    left = tokens[0].strip()
    right = tokens[1].strip()

    sparse_reaction = {}
    for cid, count in parse_reaction_formula_side(left).items():
        sparse_reaction[cid] = sparse_reaction.get(cid, 0) - count

    for cid, count in parse_reaction_formula_side(right).items():
        sparse_reaction[cid] = sparse_reaction.get(cid, 0) + count

    return sparse_reaction


def draw_rxn_figure(rxn_dict, db_smiles, novel_smiles):
    # db_smiles = load_smiles()

    left = ''
    right = ''

    for met, stoic in rxn_dict.items():
        if met == "C00080" or met == "C00282":
            continue  # hydogen is not considered
        if stoic > 0:
            if met in db_smiles:
                right = right + db_smiles[met] + '.'
            else:
                right = right + novel_smiles[met] + '.'
        else:
            if met in db_smiles:
                left = left + db_smiles[met] + '.'
            else:
                left = left + novel_smiles[met] + '.'
    smarts = left[:-1] + '>>' + right[:-1]
    # print smarts
    smarts = str(smarts)
    rxn = Reactions.ReactionFromSmarts(smarts, useSmiles=True)
    return Draw.ReactionToImage(rxn)  # , subImgSize=(400, 400))

# def draw_group_changes(rxn,df_rule):
#     df = parse_rule(rxn,df_rule)
#     group_dict = df.to_dict()[rxn]

#     left = ''
#     right = ''

#     for smiles,stoic in group_dict.iteritems():
#         if stoic > 0:
#             right = right + smiles + '.'
#         else:
#             left = left + smiles + '.'
#     smarts = left[:-1] + '>>' + right[:-1]
#     rxn = Reactions.ReactionFromSmarts(smarts, useSmiles=True)
#     return Draw.ReactionToImage(rxn)

# def get_rxn_rule(rid):
#     reaction_dict = json.load(open('../data/optstoic_v3_Sji_dict.json'))
#     molecular_signature = json.load(open('../data/decompose_vector_ac.json'))
#     molsigna_df = pd.DataFrame.from_dict(molecular_signature).fillna(0)
#     all_mets = molsigna_df.columns.tolist()
#     all_mets.append("C00080")
#     all_mets.append("C00282")

#     rule_df = pd.DataFrame(index=molsigna_df.index)

#     info = reaction_dict[rid]

#     # skip the reactions with missing metabolites
#     mets = info.keys()
#     flag = False
#     for met in mets:
#         if met not in all_mets:
#             flag = True
#             break
#     if flag:
#         return None

#     rule_df[rid] = 0
#     for met, stoic in info.items():
#         if met == "C00080" or met == "C00282":
#             continue  # hydogen is zero
#         rule_df[rid] += molsigna_df[met] * stoic
#     return rule_df


def get_rule(rxn_dict, molsig1, molsig2, novel_decomposed1, novel_decomposed2):
    if novel_decomposed1 != None:
        for cid in novel_decomposed1:
            molsig1[cid] = novel_decomposed1[cid]
    if novel_decomposed2 != None:
        for cid in novel_decomposed2:
            molsig2[cid] = novel_decomposed2[cid]

    molsigna_df1 = pd.DataFrame.from_dict(molsig1).fillna(0)
    all_mets1 = molsigna_df1.columns.tolist()
    all_mets1.append("C00080")
    all_mets1.append("C00282")

    molsigna_df2 = pd.DataFrame.from_dict(molsig2).fillna(0)
    all_mets2 = molsigna_df2.columns.tolist()
    all_mets2.append("C00080")
    all_mets2.append("C00282")

    moieties_r1 = open('./data/group_names_r1.txt')
    moieties_r2 = open('./data/group_names_r2_py3_modified_manual.txt')
    moie_r1 = moieties_r1.read().splitlines()
    moie_r2 = moieties_r2.read().splitlines()

    molsigna_df1 = molsigna_df1.reindex(moie_r1)
    molsigna_df2 = molsigna_df2.reindex(moie_r2)

    rule_df1 = pd.DataFrame(index=molsigna_df1.index)
    rule_df2 = pd.DataFrame(index=molsigna_df2.index)
    # for rid, value in reaction_dict.items():
    #     # skip the reactions with missing metabolites
    #     mets = value.keys()
    #     flag = False
    #     for met in mets:
    #         if met not in all_mets:
    #             flag = True
    #             break
    #     if flag: continue

    rule_df1['change'] = 0
    for met, stoic in rxn_dict.items():
        if met == "C00080" or met == "C00282":
            continue  # hydogen is zero
        rule_df1['change'] += molsigna_df1[met] * stoic

    rule_df2['change'] = 0
    for met, stoic in rxn_dict.items():
        if met == "C00080" or met == "C00282":
            continue  # hydogen is zero
        rule_df2['change'] += molsigna_df2[met] * stoic

    rule_vec1 = rule_df1.to_numpy().T
    rule_vec2 = rule_df2.to_numpy().T

    m1, n1 = rule_vec1.shape
    m2, n2 = rule_vec2.shape

    zeros1 = np.zeros((m1, 44))
    zeros2 = np.zeros((m2, 44))
    X1 = np.concatenate((rule_vec1, zeros1), 1)
    X2 = np.concatenate((rule_vec2, zeros2), 1)

    rule_comb = np.concatenate((X1, X2), 1)

    # rule_df_final = {}
    # rule_df_final['rad1'] = rule_df1
    # rule_df_final['rad2'] = rule_df2
    return rule_comb, rule_df1, rule_df2


def get_ddG0(rxn_dict, pH, I, novel_mets):
    ccache = CompoundCacher()
    # ddG0 = get_transform_ddG0(rxn_dict, ccache, pH, I, T)
    T = 298.15
    ddG0_forward = 0
    for compound_id, coeff in rxn_dict.items():
        if novel_mets != None and compound_id in novel_mets:
            comp = novel_mets[compound_id]
        else:
            comp = ccache.get_compound(compound_id)
        ddG0_forward += coeff * comp.transform_pH7(pH, I, T)

    return ddG0_forward


def get_dG0(rxn_dict, rid, pH, I, loaded_model, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2, novel_mets):

    # rule_df = get_rxn_rule(rid)
    rule_comb, rule_df1, rule_df2 = get_rule(
        rxn_dict, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2)

    X = rule_comb
    # X = X.reshape(1,-1)
    # pdb.set_trace()
#     print(np.shape(X1))
#     print(np.shape(X2))
#     print(np.shape(X))

    ymean, ystd = loaded_model.predict(X, return_std=True)

    # print(ymean)
    # print(ystd)
    result = {}
    # result['dG0'] = ymean[0] + get_ddG0(rxn_dict, pH, I)
    # result['standard deviation'] = ystd[0]

    # result_df = pd.DataFrame([result])
    # result_df.style.hide_index()
    # return result_df
    return ymean[0] + get_ddG0(rxn_dict, pH, I, novel_mets), ystd[0], rule_df1, rule_df2
    # return ymean[0],ystd[0]


def parse_novel_molecule(add_info):
    result = {}
    for cid, InChI in add_info.items():
        c = Compound.from_inchi('Test', cid, InChI)
        result[cid] = c
    return result


def parse_novel_smiles(result):
    novel_smiles = {}
    for cid, c in result.items():
        smiles = c.smiles_pH7
        novel_smiles[cid] = smiles
    return novel_smiles


def main():
    # def img_to_bytes(img_path):
    #     img_bytes = Path(img_path).read_bytes()
    #     encoded = base64.b64encode(img_bytes).decode()
    #     return encoded
    # # st.title('dGPredictor')

    # header_html = "<img src='../figures/header.png'>"

    # st.markdown(
    #     header_html, unsafe_allow_html=True,
    # )

    db_smiles = load_smiles()
    molsig_r1 = load_molsig_rad1()
    molsig_r2 = load_molsig_rad2()

    loaded_model = load_model()
    ccache = load_compound_cache()

    st.image('./figures/header.png', use_column_width=True)

    st.subheader('Reaction (please use KEGG IDs)')

    # rxn_str = st.text_input('Reaction using KEGG ids:', value='C16688 + C00001 <=> C00095 + C00092')
    rxn_str = st.text_input(
        '', value='C01745 + C00004 <=> N00001 + C00003 + C00001')
    # rxn_str = st.text_input('', value='C16688 + C00001 <=> C00095 + C00092')

    # url = 'https://www.genome.jp/dbget-bin/www_bget?rn:R00801'
    # if st.button('KEGG format example'):
    #     webbrowser.open_new_tab(url)

    if st.checkbox('Reaction has metabolites not in KEGG'):
        # st.subheader('test')
        add_info = st.text_area('Additional information (id: InChI):',
                                '{"N00001":"InChI=1S/C14H12O/c15-14-8-4-7-13(11-14)10-9-12-5-2-1-3-6-12/h1-11,15H/b10-9+"}')
    else:
        add_info = '{"None":"None"}'

    # session_state = SessionState.get(name="", button_sent=False)
    # button_search = st.button("Search")

    # if button_search:
    #     session_state.button_search = True
    pH = st.slider('pH', min_value=0.0, max_value=14.0, value=7.0, step=0.1)
    I = st.slider('Ionic strength [M]', min_value=0.0,
                  max_value=0.5, value=0.1, step=0.01)

    if st.button("Search"):
        # if session_state.button_search:
        st.subheader('Reaction Equation')
        st.write(rxn_str)
        with st.spinner('Searching...'):
            try:
                novel_mets = parse_novel_molecule(json.loads(add_info))
                novel_smiles = parse_novel_smiles(novel_mets)
                novel_decomposed_r1 = decompse_novel_mets_rad1(novel_smiles)
                novel_decomposed_r2 = decompse_novel_mets_rad2(novel_smiles)

            except Exception as e:
                novel_mets = None
                novel_smiles = None
                novel_decomposed_r1 = None
                novel_decomposed_r2 = None
            # novel_smiles = json.loads(add_info)
            print(novel_smiles)

            rxn_dict = parse_formula(rxn_str)
            st.image(draw_rxn_figure(rxn_dict, db_smiles,
                     novel_smiles), use_column_width=True)

        # st.text('Group changes:')
        # st.write(parse_rule('R03921'))
        # st.write(get_rxn_rule('R03921'))

        # session_state.calculate  = st.button('Start Calculate!')
        # if session_state.calculate:
        # if st.button('Start Calculate!'):

        # st.text('Result:')
        st.subheader('Thermodynamics')
        with st.spinner('Calculating...'):
            mu, std, rule_df1, rule_df2 = get_dG0(
                rxn_dict, 'R00801', pH, I, loaded_model, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2, novel_mets)
            st.write(r"$\Delta_r G'^{o} = %.2f \pm %.2f \ kJ/mol$" % (mu, std))
            st.text('Group changes:')
            st.write(rule_df1[(rule_df1.T != 0).any()])
            st.write(rule_df2[(rule_df2.T != 0).any()])


if __name__ == '__main__':
    main()