Spaces:
Runtime error
Runtime error
File size: 15,226 Bytes
66061aa 6d1bc76 f410cbd 6d1bc76 99c9ce8 6ea14f8 66061aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import streamlit as st
import pandas as pd
import numpy as np
import re
from PIL import Image
import webbrowser
import json
import pickle
import sys
import joblib
import sys
import os
try:
from openbabel import openbabel
except:
print ("openbabel not found, Installing openbabel ")
os.system("conda install -c openbabel openbabel")
from openbabel import openbabel
sys.path.append('./CC/')
import chemaxon
from chemaxon import *
from compound import Compound
from compound_cacher import CompoundCacher
from rdkit.Chem import rdChemReactions as Reactions
from rdkit.Chem import Draw
from rdkit import Chem
@st.cache(allow_output_mutation=True)
def load_smiles():
db = pd.read_csv('./data/cache_compounds_20160818.csv',
index_col='compound_id')
db_smiles = db['smiles_pH7'].to_dict()
return db_smiles
@st.cache(allow_output_mutation=True)
def load_molsig_rad1():
molecular_signature_r1 = json.load(open('./data/decompose_vector_ac.json'))
return molecular_signature_r1
@st.cache(allow_output_mutation=True)
def load_molsig_rad2():
molecular_signature_r2 = json.load(
open('./data/decompose_vector_ac_r2_py3_indent_modified_manual.json'))
return molecular_signature_r2
@st.cache(allow_output_mutation=True)
def load_model():
filename = './model/M12_model_BR.pkl'
loaded_model = joblib.load(open(filename, 'rb'))
return loaded_model
@st.cache(allow_output_mutation=True)
def load_compound_cache():
ccache = CompoundCacher()
return ccache
def count_substructures(radius, molecule):
"""Helper function for get the information of molecular signature of a
metabolite. The relaxed signature requires the number of each substructure
to construct a matrix for each molecule.
Parameters
----------
radius : int
the radius is bond-distance that defines how many neighbor atoms should
be considered in a reaction center.
molecule : Molecule
a molecule object create by RDkit (e.g. Chem.MolFromInchi(inchi_code)
or Chem.MolToSmiles(smiles_code))
Returns
-------
dict
dictionary of molecular signature for a molecule,
{smiles: molecular_signature}
"""
m = molecule
smi_count = dict()
atomList = [atom for atom in m.GetAtoms()]
for i in range(len(atomList)):
env = Chem.FindAtomEnvironmentOfRadiusN(m, radius, i)
atoms = set()
for bidx in env:
atoms.add(m.GetBondWithIdx(bidx).GetBeginAtomIdx())
atoms.add(m.GetBondWithIdx(bidx).GetEndAtomIdx())
# only one atom is in this environment, such as O in H2O
if len(atoms) == 0:
atoms = {i}
smi = Chem.MolFragmentToSmiles(m, atomsToUse=list(atoms),
bondsToUse=env, canonical=True)
if smi in smi_count:
smi_count[smi] = smi_count[smi] + 1
else:
smi_count[smi] = 1
return smi_count
def decompse_novel_mets_rad1(novel_smiles, radius=1):
decompose_vector = dict()
for cid, smiles_pH7 in novel_smiles.items():
mol = Chem.MolFromSmiles(smiles_pH7)
mol = Chem.RemoveHs(mol)
# Chem.RemoveStereochemistry(mol)
smi_count = count_substructures(radius, mol)
decompose_vector[cid] = smi_count
return decompose_vector
def decompse_novel_mets_rad2(novel_smiles, radius=2):
decompose_vector = dict()
for cid, smiles_pH7 in novel_smiles.items():
mol = Chem.MolFromSmiles(smiles_pH7)
mol = Chem.RemoveHs(mol)
# Chem.RemoveStereochemistry(mol)
smi_count = count_substructures(radius, mol)
decompose_vector[cid] = smi_count
return decompose_vector
# def parse_rule(rxn,df_rule):
# df = df_rule
# rule_df = df[rxn].to_frame()
# # new_df = rule_df[(rule_df.T != 0).any()]
# return rule_df[(rule_df.T != 0).any()]
def parse_reaction_formula_side(s):
"""
Parses the side formula, e.g. '2 C00001 + C00002 + 3 C00003'
Ignores stoichiometry.
Returns:
The set of CIDs.
"""
if s.strip() == "null":
return {}
compound_bag = {}
for member in re.split('\s+\+\s+', s):
tokens = member.split(None, 1)
if len(tokens) == 0:
continue
if len(tokens) == 1:
amount = 1
key = member
else:
amount = float(tokens[0])
key = tokens[1]
compound_bag[key] = compound_bag.get(key, 0) + amount
return compound_bag
def parse_formula(formula, arrow='<=>', rid=None):
"""
Parses a two-sided formula such as: 2 C00001 => C00002 + C00003
Return:
The set of substrates, products and the direction of the reaction
"""
tokens = formula.split(arrow)
if len(tokens) < 2:
print(('Reaction does not contain the arrow sign (%s): %s'
% (arrow, formula)))
if len(tokens) > 2:
print(('Reaction contains more than one arrow sign (%s): %s'
% (arrow, formula)))
left = tokens[0].strip()
right = tokens[1].strip()
sparse_reaction = {}
for cid, count in parse_reaction_formula_side(left).items():
sparse_reaction[cid] = sparse_reaction.get(cid, 0) - count
for cid, count in parse_reaction_formula_side(right).items():
sparse_reaction[cid] = sparse_reaction.get(cid, 0) + count
return sparse_reaction
def draw_rxn_figure(rxn_dict, db_smiles, novel_smiles):
# db_smiles = load_smiles()
left = ''
right = ''
for met, stoic in rxn_dict.items():
if met == "C00080" or met == "C00282":
continue # hydogen is not considered
if stoic > 0:
if met in db_smiles:
right = right + db_smiles[met] + '.'
else:
right = right + novel_smiles[met] + '.'
else:
if met in db_smiles:
left = left + db_smiles[met] + '.'
else:
left = left + novel_smiles[met] + '.'
smarts = left[:-1] + '>>' + right[:-1]
# print smarts
smarts = str(smarts)
rxn = Reactions.ReactionFromSmarts(smarts, useSmiles=True)
return Draw.ReactionToImage(rxn) # , subImgSize=(400, 400))
# def draw_group_changes(rxn,df_rule):
# df = parse_rule(rxn,df_rule)
# group_dict = df.to_dict()[rxn]
# left = ''
# right = ''
# for smiles,stoic in group_dict.iteritems():
# if stoic > 0:
# right = right + smiles + '.'
# else:
# left = left + smiles + '.'
# smarts = left[:-1] + '>>' + right[:-1]
# rxn = Reactions.ReactionFromSmarts(smarts, useSmiles=True)
# return Draw.ReactionToImage(rxn)
# def get_rxn_rule(rid):
# reaction_dict = json.load(open('../data/optstoic_v3_Sji_dict.json'))
# molecular_signature = json.load(open('../data/decompose_vector_ac.json'))
# molsigna_df = pd.DataFrame.from_dict(molecular_signature).fillna(0)
# all_mets = molsigna_df.columns.tolist()
# all_mets.append("C00080")
# all_mets.append("C00282")
# rule_df = pd.DataFrame(index=molsigna_df.index)
# info = reaction_dict[rid]
# # skip the reactions with missing metabolites
# mets = info.keys()
# flag = False
# for met in mets:
# if met not in all_mets:
# flag = True
# break
# if flag:
# return None
# rule_df[rid] = 0
# for met, stoic in info.items():
# if met == "C00080" or met == "C00282":
# continue # hydogen is zero
# rule_df[rid] += molsigna_df[met] * stoic
# return rule_df
def get_rule(rxn_dict, molsig1, molsig2, novel_decomposed1, novel_decomposed2):
if novel_decomposed1 != None:
for cid in novel_decomposed1:
molsig1[cid] = novel_decomposed1[cid]
if novel_decomposed2 != None:
for cid in novel_decomposed2:
molsig2[cid] = novel_decomposed2[cid]
molsigna_df1 = pd.DataFrame.from_dict(molsig1).fillna(0)
all_mets1 = molsigna_df1.columns.tolist()
all_mets1.append("C00080")
all_mets1.append("C00282")
molsigna_df2 = pd.DataFrame.from_dict(molsig2).fillna(0)
all_mets2 = molsigna_df2.columns.tolist()
all_mets2.append("C00080")
all_mets2.append("C00282")
moieties_r1 = open('./data/group_names_r1.txt')
moieties_r2 = open('./data/group_names_r2_py3_modified_manual.txt')
moie_r1 = moieties_r1.read().splitlines()
moie_r2 = moieties_r2.read().splitlines()
molsigna_df1 = molsigna_df1.reindex(moie_r1)
molsigna_df2 = molsigna_df2.reindex(moie_r2)
rule_df1 = pd.DataFrame(index=molsigna_df1.index)
rule_df2 = pd.DataFrame(index=molsigna_df2.index)
# for rid, value in reaction_dict.items():
# # skip the reactions with missing metabolites
# mets = value.keys()
# flag = False
# for met in mets:
# if met not in all_mets:
# flag = True
# break
# if flag: continue
rule_df1['change'] = 0
for met, stoic in rxn_dict.items():
if met == "C00080" or met == "C00282":
continue # hydogen is zero
rule_df1['change'] += molsigna_df1[met] * stoic
rule_df2['change'] = 0
for met, stoic in rxn_dict.items():
if met == "C00080" or met == "C00282":
continue # hydogen is zero
rule_df2['change'] += molsigna_df2[met] * stoic
rule_vec1 = rule_df1.to_numpy().T
rule_vec2 = rule_df2.to_numpy().T
m1, n1 = rule_vec1.shape
m2, n2 = rule_vec2.shape
zeros1 = np.zeros((m1, 44))
zeros2 = np.zeros((m2, 44))
X1 = np.concatenate((rule_vec1, zeros1), 1)
X2 = np.concatenate((rule_vec2, zeros2), 1)
rule_comb = np.concatenate((X1, X2), 1)
# rule_df_final = {}
# rule_df_final['rad1'] = rule_df1
# rule_df_final['rad2'] = rule_df2
return rule_comb, rule_df1, rule_df2
def get_ddG0(rxn_dict, pH, I, novel_mets):
ccache = CompoundCacher()
# ddG0 = get_transform_ddG0(rxn_dict, ccache, pH, I, T)
T = 298.15
ddG0_forward = 0
for compound_id, coeff in rxn_dict.items():
if novel_mets != None and compound_id in novel_mets:
comp = novel_mets[compound_id]
else:
comp = ccache.get_compound(compound_id)
ddG0_forward += coeff * comp.transform_pH7(pH, I, T)
return ddG0_forward
def get_dG0(rxn_dict, rid, pH, I, loaded_model, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2, novel_mets):
# rule_df = get_rxn_rule(rid)
rule_comb, rule_df1, rule_df2 = get_rule(
rxn_dict, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2)
X = rule_comb
# X = X.reshape(1,-1)
# pdb.set_trace()
# print(np.shape(X1))
# print(np.shape(X2))
# print(np.shape(X))
ymean, ystd = loaded_model.predict(X, return_std=True)
# print(ymean)
# print(ystd)
result = {}
# result['dG0'] = ymean[0] + get_ddG0(rxn_dict, pH, I)
# result['standard deviation'] = ystd[0]
# result_df = pd.DataFrame([result])
# result_df.style.hide_index()
# return result_df
return ymean[0] + get_ddG0(rxn_dict, pH, I, novel_mets), ystd[0], rule_df1, rule_df2
# return ymean[0],ystd[0]
def parse_novel_molecule(add_info):
result = {}
for cid, InChI in add_info.items():
c = Compound.from_inchi('Test', cid, InChI)
result[cid] = c
return result
def parse_novel_smiles(result):
novel_smiles = {}
for cid, c in result.items():
smiles = c.smiles_pH7
novel_smiles[cid] = smiles
return novel_smiles
def main():
# def img_to_bytes(img_path):
# img_bytes = Path(img_path).read_bytes()
# encoded = base64.b64encode(img_bytes).decode()
# return encoded
# # st.title('dGPredictor')
# header_html = "<img src='../figures/header.png'>"
# st.markdown(
# header_html, unsafe_allow_html=True,
# )
db_smiles = load_smiles()
molsig_r1 = load_molsig_rad1()
molsig_r2 = load_molsig_rad2()
loaded_model = load_model()
ccache = load_compound_cache()
st.image('./figures/header.png', use_column_width=True)
st.subheader('Reaction (please use KEGG IDs)')
# rxn_str = st.text_input('Reaction using KEGG ids:', value='C16688 + C00001 <=> C00095 + C00092')
rxn_str = st.text_input(
'', value='C01745 + C00004 <=> N00001 + C00003 + C00001')
# rxn_str = st.text_input('', value='C16688 + C00001 <=> C00095 + C00092')
# url = 'https://www.genome.jp/dbget-bin/www_bget?rn:R00801'
# if st.button('KEGG format example'):
# webbrowser.open_new_tab(url)
if st.checkbox('Reaction has metabolites not in KEGG'):
# st.subheader('test')
add_info = st.text_area('Additional information (id: InChI):',
'{"N00001":"InChI=1S/C14H12O/c15-14-8-4-7-13(11-14)10-9-12-5-2-1-3-6-12/h1-11,15H/b10-9+"}')
else:
add_info = '{"None":"None"}'
# session_state = SessionState.get(name="", button_sent=False)
# button_search = st.button("Search")
# if button_search:
# session_state.button_search = True
pH = st.slider('pH', min_value=0.0, max_value=14.0, value=7.0, step=0.1)
I = st.slider('Ionic strength [M]', min_value=0.0,
max_value=0.5, value=0.1, step=0.01)
if st.button("Search"):
# if session_state.button_search:
st.subheader('Reaction Equation')
st.write(rxn_str)
with st.spinner('Searching...'):
try:
novel_mets = parse_novel_molecule(json.loads(add_info))
novel_smiles = parse_novel_smiles(novel_mets)
novel_decomposed_r1 = decompse_novel_mets_rad1(novel_smiles)
novel_decomposed_r2 = decompse_novel_mets_rad2(novel_smiles)
except Exception as e:
novel_mets = None
novel_smiles = None
novel_decomposed_r1 = None
novel_decomposed_r2 = None
# novel_smiles = json.loads(add_info)
print(novel_smiles)
rxn_dict = parse_formula(rxn_str)
st.image(draw_rxn_figure(rxn_dict, db_smiles,
novel_smiles), use_column_width=True)
# st.text('Group changes:')
# st.write(parse_rule('R03921'))
# st.write(get_rxn_rule('R03921'))
# session_state.calculate = st.button('Start Calculate!')
# if session_state.calculate:
# if st.button('Start Calculate!'):
# st.text('Result:')
st.subheader('Thermodynamics')
with st.spinner('Calculating...'):
mu, std, rule_df1, rule_df2 = get_dG0(
rxn_dict, 'R00801', pH, I, loaded_model, molsig_r1, molsig_r2, novel_decomposed_r1, novel_decomposed_r2, novel_mets)
st.write(r"$\Delta_r G'^{o} = %.2f \pm %.2f \ kJ/mol$" % (mu, std))
st.text('Group changes:')
st.write(rule_df1[(rule_df1.T != 0).any()])
st.write(rule_df2[(rule_df2.T != 0).any()])
if __name__ == '__main__':
main()
|