File size: 6,764 Bytes
183f457
 
 
 
 
 
 
 
 
 
 
 
add175f
1dc8f44
3e96f52
1dc8f44
183f457
 
add175f
 
183f457
 
 
 
 
1dc8f44
 
 
 
 
 
 
 
 
 
 
 
 
 
183f457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dc8f44
183f457
 
 
1dc8f44
183f457
 
 
 
 
 
 
 
 
 
1dc8f44
183f457
 
908df6d
183f457
 
 
 
 
 
 
 
 
 
 
 
 
1dc8f44
183f457
 
 
 
 
 
 
 
 
 
 
6bece0b
183f457
6bece0b
183f457
 
 
 
 
 
 
 
 
c7e5b16
183f457
 
 
aeedefa
1dc8f44
183f457
 
 
 
 
 
 
 
 
 
ec0930e
 
183f457
 
 
a5967d8
 
 
183f457
1d208b0
183f457
c7e5b16
 
 
 
 
183f457
 
c7e5b16
1dc8f44
183f457
c7e5b16
1dc8f44
183f457
 
c7e5b16
 
 
 
 
1dc8f44
183f457
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import requests
from PIL import Image
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd

from lavis.common.gradcam import getAttMap
from lavis.models import load_model_and_preprocess

from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
import torch, gc
from gpuinfo import GPUInfo
import psutil
import time

def prepare_data(image, question):
    gc.collect()
    torch.cuda.empty_cache()
    image = vis_processors["eval"](image).unsqueeze(0).to(device)
    question = txt_processors["eval"](question)
    samples = {"image": image, "text_input": [question]}
    return samples

def running_inf(time_start):
    time_end = time.time()
    time_diff = time_end - time_start
    memory = psutil.virtual_memory()
    gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
    gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
    gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
    system_info = f"""
    *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* 
    *Processing time: {time_diff:.5} seconds.*
    *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
    """
    return system_info
    
def gradcam_attention(image, question):
    dst_w = 720
    samples = prepare_data(image, question)
    samples = model.forward_itm(samples=samples)
    
    w, h = image.size
    scaling_factor = dst_w / w

    resized_img = image.resize((int(w * scaling_factor), int(h * scaling_factor)))
    norm_img = np.float32(resized_img) / 255
    gradcam = samples['gradcams'].reshape(24,24)

    avg_gradcam = getAttMap(norm_img, gradcam, blur=True)
    return (avg_gradcam * 255).astype(np.uint8)

def generate_cap(image, question, cap_number):
    time_start = time.time()
    samples = prepare_data(image, question)
    samples = model.forward_itm(samples=samples)
    samples = model.forward_cap(samples=samples, num_captions=cap_number, num_patches=5)
    return pd.DataFrame({'Caption': samples['captions'][0][:cap_number]}), running_inf(time_start)

def postprocess(text):
    for i, ans in enumerate(text):
        for j, w in enumerate(ans):
            if w == '.' or w == '\n':
                ans = ans[:j].lower()
                break
    return ans

def generate_answer(image, question):
    time_start = time.time()
    samples = prepare_data(image, question)
    samples = model.forward_itm(samples=samples)
    samples = model.forward_cap(samples=samples, num_captions=5, num_patches=20)
    samples = model.forward_qa_generation(samples)
    Img2Prompt = model.prompts_construction(samples)
    Img2Prompt_input = tokenizer(Img2Prompt, padding='longest', truncation=True, return_tensors="pt").to(device)

    outputs = llm_model.generate(input_ids=Img2Prompt_input.input_ids,
                            attention_mask=Img2Prompt_input.attention_mask,
                            max_length=20+len(Img2Prompt_input.input_ids[0]),
                            return_dict_in_generate=True,
                            output_scores=True
                            )
    pred_answer = tokenizer.batch_decode(outputs.sequences[:, len(Img2Prompt_input.input_ids[0]):])
    pred_answer = postprocess(pred_answer)
    print(pred_answer, type(pred_answer))
    return pred_answer, running_inf(time_start)
    
# setup device to use
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

def load_model(model_selection):
    model = AutoModelForCausalLM.from_pretrained(model_selection)
    tokenizer = AutoTokenizer.from_pretrained(model_selection, use_fast=False)
    return model,tokenizer

# Choose LLM to use
# weights for OPT-350M/OPT-6.7B/OPT-13B/OPT-30B/OPT-66B will download automatically
print("Loading Large Language Model (LLM)...")
llm_model, tokenizer = load_model('facebook/opt-350m')  # ~700MB (FP16)
llm_model.to(device)
model, vis_processors, txt_processors = load_model_and_preprocess(name="img2prompt_vqa", model_type="base", is_eval=True, device=device)


# ---- Gradio Layout -----
title = "From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models"
df_init = pd.DataFrame(columns=['Caption'])
raw_image = gr.Image(label='Input image', type="pil")
question = gr.Textbox(label="Input question", lines=1, interactive=True)
text_output = gr.Textbox(label="Output Answer")
demo = gr.Blocks(title=title)
demo.encrypt = False
cap_df = gr.DataFrame(value=df_init, label="Caption dataframe", row_count=(0, "dynamic"), max_rows = 20, wrap=True, overflow_row_behaviour='paginate')
memory = psutil.virtual_memory()
system_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")

with demo:
    with gr.Row():
      gr.Markdown(f'''
                  <div>
                  <h1 style='text-align: center'>From Images to Textual Prompts: Zero-shot VQA with Frozen Large Language Models</h1>
                  </div>
                  <div align="center">
                  <h3>  What you can do with this space </h3>
                  <h4> 1. Upload your image and fill your question </h4>
                  <h4> 2. Creating caption from your image </h4>
                  <h4> 3. Answering your question based on uploaded image </h4>
                  </div>
                  ''')  
    examples = gr.Examples(examples=
                [["image1.jpg", "What type of bird is this?"],
                 ["image2.jpg", "What type of bike is on the ground?"],
                 ["image3.jpg", "What is the person in the photo wearing?"]],
    label="Examples", inputs=[raw_image, question])
    
    with gr.Row():
        with gr.Column():  
            raw_image.render()
        with gr.Column():
            question.render()
            number_cap = gr.Number(precision=0, value=5, label="Selected number of caption you want to generate", interactive=True)
    with gr.Row():
      with gr.Column():
            cap_btn = gr.Button("Generate caption")
            cap_btn.click(generate_cap, [raw_image, question, number_cap], [cap_df, system_info])
      with gr.Column():
            anws_btn = gr.Button("Answer")
            anws_btn.click(generate_answer, [raw_image, question], outputs=[text_output, system_info])
    with gr.Row():  
      with gr.Column():  
      #     gradcam_btn = gr.Button("Generate Gradcam")
      #     gradcam_btn.click(gradcam_attention, [raw_image, question], outputs=[avg_gradcam])
            cap_df.render()
      with gr.Column():  
            text_output.render()
            system_info.render()

demo.launch(debug=True)