File size: 6,869 Bytes
b4c8bc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""Trackball class for 3D manipulation of viewpoints.
"""
import numpy as np

import trimesh.transformations as transformations


class Trackball(object):
    """A trackball class for creating camera transforms from mouse movements.
    """
    STATE_ROTATE = 0
    STATE_PAN = 1
    STATE_ROLL = 2
    STATE_ZOOM = 3

    def __init__(self, pose, size, scale,
                 target=np.array([0.0, 0.0, 0.0])):
        """Initialize a trackball with an initial camera-to-world pose
        and the given parameters.

        Parameters
        ----------
        pose : [4,4]
            An initial camera-to-world pose for the trackball.

        size : (float, float)
            The width and height of the camera image in pixels.

        scale : float
            The diagonal of the scene's bounding box --
            used for ensuring translation motions are sufficiently
            fast for differently-sized scenes.

        target : (3,) float
            The center of the scene in world coordinates.
            The trackball will revolve around this point.
        """
        self._size = np.array(size)
        self._scale = float(scale)

        self._pose = pose
        self._n_pose = pose

        self._target = target
        self._n_target = target

        self._state = Trackball.STATE_ROTATE

    @property
    def pose(self):
        """autolab_core.RigidTransform : The current camera-to-world pose.
        """
        return self._n_pose

    def set_state(self, state):
        """Set the state of the trackball in order to change the effect of
        dragging motions.

        Parameters
        ----------
        state : int
            One of Trackball.STATE_ROTATE, Trackball.STATE_PAN,
            Trackball.STATE_ROLL, and Trackball.STATE_ZOOM.
        """
        self._state = state

    def resize(self, size):
        """Resize the window.

        Parameters
        ----------
        size : (float, float)
            The new width and height of the camera image in pixels.
        """
        self._size = np.array(size)

    def down(self, point):
        """Record an initial mouse press at a given point.

        Parameters
        ----------
        point : (2,) int
            The x and y pixel coordinates of the mouse press.
        """
        self._pdown = np.array(point, dtype=np.float32)
        self._pose = self._n_pose
        self._target = self._n_target

    def drag(self, point):
        """Update the tracball during a drag.

        Parameters
        ----------
        point : (2,) int
            The current x and y pixel coordinates of the mouse during a drag.
            This will compute a movement for the trackball with the relative
            motion between this point and the one marked by down().
        """
        point = np.array(point, dtype=np.float32)
        dx, dy = point - self._pdown
        mindim = 0.3 * np.min(self._size)

        target = self._target
        x_axis = self._pose[:3,0].flatten()
        y_axis = self._pose[:3,1].flatten()
        z_axis = self._pose[:3,2].flatten()
        eye = self._pose[:3,3].flatten()

        # Interpret drag as a rotation
        if self._state == Trackball.STATE_ROTATE:
            x_angle = -dx / mindim
            x_rot_mat = transformations.rotation_matrix(
                x_angle, y_axis, target
            )

            y_angle = dy / mindim
            y_rot_mat = transformations.rotation_matrix(
                y_angle, x_axis, target
            )

            self._n_pose = y_rot_mat.dot(x_rot_mat.dot(self._pose))

        # Interpret drag as a roll about the camera axis
        elif self._state == Trackball.STATE_ROLL:
            center = self._size / 2.0
            v_init = self._pdown - center
            v_curr = point - center
            v_init = v_init / np.linalg.norm(v_init)
            v_curr = v_curr / np.linalg.norm(v_curr)

            theta = (-np.arctan2(v_curr[1], v_curr[0]) +
                     np.arctan2(v_init[1], v_init[0]))

            rot_mat = transformations.rotation_matrix(theta, z_axis, target)

            self._n_pose = rot_mat.dot(self._pose)

        # Interpret drag as a camera pan in view plane
        elif self._state == Trackball.STATE_PAN:
            dx = -dx / (5.0 * mindim) * self._scale
            dy = -dy / (5.0 * mindim) * self._scale

            translation = dx * x_axis + dy * y_axis
            self._n_target = self._target + translation
            t_tf = np.eye(4)
            t_tf[:3,3] = translation
            self._n_pose = t_tf.dot(self._pose)

        # Interpret drag as a zoom motion
        elif self._state == Trackball.STATE_ZOOM:
            radius = np.linalg.norm(eye - target)
            ratio = 0.0
            if dy > 0:
                ratio = np.exp(abs(dy) / (0.5 * self._size[1])) - 1.0
            elif dy < 0:
                ratio = 1.0 - np.exp(dy / (0.5 * (self._size[1])))
            translation = -np.sign(dy) * ratio * radius * z_axis
            t_tf = np.eye(4)
            t_tf[:3,3] = translation
            self._n_pose = t_tf.dot(self._pose)

    def scroll(self, clicks):
        """Zoom using a mouse scroll wheel motion.

        Parameters
        ----------
        clicks : int
            The number of clicks. Positive numbers indicate forward wheel
            movement.
        """
        target = self._target
        ratio = 0.90

        mult = 1.0
        if clicks > 0:
            mult = ratio**clicks
        elif clicks < 0:
            mult = (1.0 / ratio)**abs(clicks)

        z_axis = self._n_pose[:3,2].flatten()
        eye = self._n_pose[:3,3].flatten()
        radius = np.linalg.norm(eye - target)
        translation = (mult * radius - radius) * z_axis
        t_tf = np.eye(4)
        t_tf[:3,3] = translation
        self._n_pose = t_tf.dot(self._n_pose)

        z_axis = self._pose[:3,2].flatten()
        eye = self._pose[:3,3].flatten()
        radius = np.linalg.norm(eye - target)
        translation = (mult * radius - radius) * z_axis
        t_tf = np.eye(4)
        t_tf[:3,3] = translation
        self._pose = t_tf.dot(self._pose)

    def rotate(self, azimuth, axis=None):
        """Rotate the trackball about the "Up" axis by azimuth radians.

        Parameters
        ----------
        azimuth : float
            The number of radians to rotate.
        """
        target = self._target

        y_axis = self._n_pose[:3,1].flatten()
        if axis is not None:
            y_axis = axis
        x_rot_mat = transformations.rotation_matrix(azimuth, y_axis, target)
        self._n_pose = x_rot_mat.dot(self._n_pose)

        y_axis = self._pose[:3,1].flatten()
        if axis is not None:
            y_axis = axis
        x_rot_mat = transformations.rotation_matrix(azimuth, y_axis, target)
        self._pose = x_rot_mat.dot(self._pose)