File size: 8,297 Bytes
4275cae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# Motion VQ-Trans
Pytorch implementation of paper "Generating Human Motion from Textual Descriptions with High Quality Discrete Representation"


[[Notebook Demo]](https://colab.research.google.com/drive/1tAHlmcpKcjg_zZrqKku7AfpqdVAIFrF8?usp=sharing)


![teaser](img/Teaser.png)

If our project is helpful for your research, please consider citing : (todo)
``` 
@inproceedings{shen2020ransac,
          title={RANSAC-Flow: generic two-stage image alignment},
          author={Shen, Xi and Darmon, Fran{\c{c}}ois and Efros, Alexei A and Aubry, Mathieu},
          booktitle={16th European Conference on Computer Vision}
          year={2020}
        }
```


## Table of Content
* [1. Visual Results](#1-visual-results)
* [2. Installation](#2-installation)
* [3. Quick Start](#3-quick-start)
* [4. Train](#4-train)
* [5. Evaluation](#5-evaluation)
* [6. Motion Render](#6-motion-render)
* [7. Acknowledgement](#7-acknowledgement)
* [8. ChangLog](#8-changlog)




## 1. Visual Results (More results can be found in our project page (todo))

![visualization](img/ALLvis.png)

 
## 2. Installation

### 2.1. Environment

<!-- Our model can be learnt in a **single GPU GeForce GTX 1080Ti** (12G).

Install Pytorch adapted to your CUDA version : 

* [Pytorch 1.2.0](https://pytorch.org/get-started/previous-versions/#linux-and-windows-1) 
* [Torchvision 0.4.0](https://pytorch.org/get-started/previous-versions/#linux-and-windows-1)

Other dependencies (tqdm, visdom, pandas, kornia, opencv-python) : 
``` Bash
bash requirement.sh
``` -->

Our model can be learnt in a **single GPU V100-32G**

```bash
conda env create -f environment.yml
conda activate VQTrans
```

The code was tested on Python 3.8 and PyTorch 1.8.1.


### 2.2. Dependencies

```bash
bash dataset/prepare/download_glove.sh
```


### 2.3. Datasets


We are using two 3D human motion-language dataset: HumanML3D and KIT-ML. For both datasets, you could find the details as well as download link [[here]](https://github.com/EricGuo5513/HumanML3D).   

Take HumanML3D for an example, the file directory should look like this:  
```
./dataset/HumanML3D/
β”œβ”€β”€ new_joint_vecs/
β”œβ”€β”€ texts/
β”œβ”€β”€ Mean.npy # same as in [HumanML3D](https://github.com/EricGuo5513/HumanML3D) 
β”œβ”€β”€ Std.npy # same as in [HumanML3D](https://github.com/EricGuo5513/HumanML3D) 
β”œβ”€β”€ train.txt
β”œβ”€β”€ val.txt
β”œβ”€β”€ test.txt
β”œβ”€β”€ train_val.txt
└──all.txt
```


### 2.4. Motion & text feature extractors:

We use the same extractors provided by [t2m](https://github.com/EricGuo5513/text-to-motion) to evaluate our generated motions. Please download the extractors.

```bash
bash dataset/prepare/download_extractor.sh
```

### 2.5. Pre-trained models 

The pretrained model files will be stored in the 'pretrained' folder:
```bash
bash dataset/prepare/download_model.sh
```

<!-- Quick download : 

``` Bash
cd model/pretrained
bash download_model.sh
```

For more details of the pre-trained models, see [here](https://github.com/XiSHEN0220/RANSAC-Flow/blob/master/model/pretrained)  -->

### 2.6. Render motion (optional)

If you want to render the generated motion, you need to install:

```bash
sudo sh dataset/prepare/download_smpl.sh
conda install -c menpo osmesa
conda install h5py
conda install -c conda-forge shapely pyrender trimesh mapbox_earcut
```



## 3. Quick Start

A quick start guide of how to use our code is available in [demo.ipynb](https://colab.research.google.com/drive/1tAHlmcpKcjg_zZrqKku7AfpqdVAIFrF8?usp=sharing)

<p align="center">
<img src="img/demo.png" width="400px" alt="demo">
</p>


## 4. Train

Note that, for kit dataset, just need to set '--dataname kit'.

### 4.1. VQ-VAE 

The results are saved in the folder output_vqfinal.

<details>
<summary>
VQ training
</summary>

```bash
python3 train_vq.py \
--batch-size 256 \
--lr 2e-4 \
--total-iter 300000 \
--lr-scheduler 200000 \
--nb-code 512 \
--down-t 2 \
--depth 3 \
--dilation-growth-rate 3 \
--out-dir output \
--dataname t2m \
--vq-act relu \
--quantizer ema_reset \
--loss-vel 0.5 \
--recons-loss l1_smooth \
--exp-name VQVAE
```

</details>

### 4.2. Motion-Transformer 

The results are saved in the folder output_transformer.

<details>
<summary>
MoTrans training
</summary>

```bash
python3 train_t2m_trans.py  \
--exp-name VQTransformer \
--batch-size 128 \
--num-layers 9 \
--embed-dim-gpt 1024 \
--nb-code 512 \
--n-head-gpt 16 \
--block-size 51 \
--ff-rate 4 \
--drop-out-rate 0.1 \
--resume-pth output/VQVAE/net_last.pth \
--vq-name VQVAE \
--out-dir output \
--total-iter 300000 \
--lr-scheduler 150000 \
--lr 0.0001 \
--dataname t2m \
--down-t 2 \
--depth 3 \
--quantizer ema_reset \
--eval-iter 10000 \
--pkeep 0.5 \
--dilation-growth-rate 3 \
--vq-act relu
```

</details>

## 5. Evaluation 

### 5.1. VQ-VAE 
<details>
<summary>
VQ eval
</summary>

```bash
python3 VQ_eval.py \
--batch-size 256 \
--lr 2e-4 \
--total-iter 300000 \
--lr-scheduler 200000 \
--nb-code 512 \
--down-t 2 \
--depth 3 \
--dilation-growth-rate 3 \
--out-dir output \
--dataname t2m \
--vq-act relu \
--quantizer ema_reset \
--loss-vel 0.5 \
--recons-loss l1_smooth \
--exp-name TEST_VQVAE \
--resume-pth output/VQVAE/net_last.pth
```

</details>

### 5.2. Motion-Transformer

<details>
<summary>
MoTrans eval
</summary>

```bash
python3 GPT_eval_multi.py  \
--exp-name TEST_VQTransformer \
--batch-size 128 \
--num-layers 9 \
--embed-dim-gpt 1024 \
--nb-code 512 \
--n-head-gpt 16 \
--block-size 51 \
--ff-rate 4 \
--drop-out-rate 0.1 \
--resume-pth output/VQVAE/net_last.pth \
--vq-name VQVAE \
--out-dir output \
--total-iter 300000 \
--lr-scheduler 150000 \
--lr 0.0001 \
--dataname t2m \
--down-t 2 \
--depth 3 \
--quantizer ema_reset \
--eval-iter 10000 \
--pkeep 0.5 \
--dilation-growth-rate 3 \
--vq-act relu \
--resume-gpt output/VQTransformer/net_best_fid.pth
```

</details>


## 6. Motion Render 

<details>
<summary>
Motion Render
</summary>

You should input the npy folder address and the motion names. Here is an example:

```bash
python3 render_final.py --filedir output/TEST_VQTransformer/ --motion-list 000019 005485
```

</details>

### 7. Acknowledgement

We appreciate helps from :  

* Public code like [text-to-motion](https://github.com/EricGuo5513/text-to-motion), [TM2T](https://github.com/EricGuo5513/TM2T) etc.

### 8. ChangLog























<!-- # VQGPT

```
# VQ during training OT
/apdcephfs_cq2/share_1290939/jirozhang/anaconda3/envs/motionclip/bin/python3 train_251_cnn_all.py \
--batch-size 128 \
--exp-name xxxxxx \
--lr 2e-4 \
--total-iter 300000 \
--lr-scheduler 200000 \
--nb-code 512 \
--down-t 2 \
--depth 5 \
--out-dir /apdcephfs_cq2/share_1290939/jirozhang/VQCNN_HUMAN/ \
--dataname t2m \
--vq-act relu \
--quantizer ot \
--ot-temperature 1 \
--ot-eps 0.5 \
--commit 0.001 \
```

```
# VQ251 training baseline
/apdcephfs_cq2/share_1290939/jirozhang/anaconda3/envs/motionclip/bin/python3 train_251_cnn_all.py \
--batch-size 128 \
--exp-name VQ263_300K_512cb_down4_t2m_ema_relu_test \
--lr 2e-4 \
--total-iter 300000 \
--lr-scheduler 200000 \
--nb-code 512 \
--down-t 2 \
--depth 5 \
--out-dir /apdcephfs_cq2/share_1290939/jirozhang/VQCNN_HUMAN/ \
--dataname t2m \
--vq-act relu \
--quantizer ema \
```


```bash
# gpt training + noise
/apdcephfs_cq2/share_1290939/jirozhang/anaconda3/envs/motionclip/bin/python3 train_gpt_cnn_noise.py  \
--exp-name GPT_VQ_300K_512cb_down4_t2m_ema_relu_bs128_ws64_fid_mask1_08 \
--batch-size 128 \
--num-layers 4 \
--block-size 51 \
--n-head-gpt 8 \
--ff-rate 4 \
--drop-out-rate 0.1 \
--resume-pth output_vqhuman/VQ_300K_512cb_down4_t2m_ema_relu_bs128_ws64/net_best_fid.pth \
--vq-name VQ_300K_512cb_down4_t2m_ema_relu_bs128_ws64_fid_mask1_08 \
--total-iter 300000 \
--lr-scheduler 150000 \
--lr 0.0001 \
--if-auxloss \
--dataname t2m \
--down-t 2 \
--depth 5 \
--quantizer ema \
--eval-iter 5000 \
--pkeep 0.8
```


### Visualize VQ (Arch Taming) in HTML 

* Generate motion. This will save generated motions in `./visual_results/vel05_taming_l1s`

```
python vis.py --dataname t2m --resume-pth /apdcephfs_cq2/share_1290939/jirozhang/VQ_t2m_bailando_relu_NoNorm_dilate3_vel05_taming_l1s/net_last.pth --visual-name vel05_taming_l1s --vis-gt --nb-vis 20
```

* Make a Webpage. Go to visual_html.py, modify the name, then run :

```
python visual_html.py
``` -->