Spaces:
Runtime error
Runtime error
File size: 6,110 Bytes
4275cae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import torch
from torch.utils import data
import numpy as np
from os.path import join as pjoin
import random
import codecs as cs
from tqdm import tqdm
import utils.paramUtil as paramUtil
from torch.utils.data._utils.collate import default_collate
def collate_fn(batch):
batch.sort(key=lambda x: x[3], reverse=True)
return default_collate(batch)
'''For use of training text-2-motion generative model'''
class Text2MotionDataset(data.Dataset):
def __init__(self, dataset_name, feat_bias = 5, unit_length = 4, codebook_size = 1024, tokenizer_name=None):
self.max_length = 64
self.pointer = 0
self.dataset_name = dataset_name
self.unit_length = unit_length
# self.mot_start_idx = codebook_size
self.mot_end_idx = codebook_size
self.mot_pad_idx = codebook_size + 1
if dataset_name == 't2m':
self.data_root = './dataset/HumanML3D'
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
self.text_dir = pjoin(self.data_root, 'texts')
self.joints_num = 22
radius = 4
fps = 20
self.max_motion_length = 26 if unit_length == 8 else 51
dim_pose = 263
kinematic_chain = paramUtil.t2m_kinematic_chain
elif dataset_name == 'kit':
self.data_root = './dataset/KIT-ML'
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
self.text_dir = pjoin(self.data_root, 'texts')
self.joints_num = 21
radius = 240 * 8
fps = 12.5
dim_pose = 251
self.max_motion_length = 26 if unit_length == 8 else 51
kinematic_chain = paramUtil.kit_kinematic_chain
split_file = pjoin(self.data_root, 'train.txt')
id_list = []
with cs.open(split_file, 'r') as f:
for line in f.readlines():
id_list.append(line.strip())
new_name_list = []
data_dict = {}
for name in tqdm(id_list):
try:
m_token_list = np.load(pjoin(self.data_root, tokenizer_name, '%s.npy'%name))
# Read text
with cs.open(pjoin(self.text_dir, name + '.txt')) as f:
text_data = []
flag = False
lines = f.readlines()
for line in lines:
try:
text_dict = {}
line_split = line.strip().split('#')
caption = line_split[0]
t_tokens = line_split[1].split(' ')
f_tag = float(line_split[2])
to_tag = float(line_split[3])
f_tag = 0.0 if np.isnan(f_tag) else f_tag
to_tag = 0.0 if np.isnan(to_tag) else to_tag
text_dict['caption'] = caption
text_dict['tokens'] = t_tokens
if f_tag == 0.0 and to_tag == 0.0:
flag = True
text_data.append(text_dict)
else:
m_token_list_new = [tokens[int(f_tag*fps/unit_length) : int(to_tag*fps/unit_length)] for tokens in m_token_list if int(f_tag*fps/unit_length) < int(to_tag*fps/unit_length)]
if len(m_token_list_new) == 0:
continue
new_name = '%s_%f_%f'%(name, f_tag, to_tag)
data_dict[new_name] = {'m_token_list': m_token_list_new,
'text':[text_dict]}
new_name_list.append(new_name)
except:
pass
if flag:
data_dict[name] = {'m_token_list': m_token_list,
'text':text_data}
new_name_list.append(name)
except:
pass
self.data_dict = data_dict
self.name_list = new_name_list
def __len__(self):
return len(self.data_dict)
def __getitem__(self, item):
data = self.data_dict[self.name_list[item]]
m_token_list, text_list = data['m_token_list'], data['text']
m_tokens = random.choice(m_token_list)
text_data = random.choice(text_list)
caption= text_data['caption']
coin = np.random.choice([False, False, True])
# print(len(m_tokens))
if coin:
# drop one token at the head or tail
coin2 = np.random.choice([True, False])
if coin2:
m_tokens = m_tokens[:-1]
else:
m_tokens = m_tokens[1:]
m_tokens_len = m_tokens.shape[0]
if m_tokens_len+1 < self.max_motion_length:
m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx, np.ones((self.max_motion_length-1-m_tokens_len), dtype=int) * self.mot_pad_idx], axis=0)
else:
m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx], axis=0)
return caption, m_tokens.reshape(-1), m_tokens_len
def DATALoader(dataset_name,
batch_size, codebook_size, tokenizer_name, unit_length=4,
num_workers = 8) :
train_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, codebook_size = codebook_size, tokenizer_name = tokenizer_name, unit_length=unit_length),
batch_size,
shuffle=True,
num_workers=num_workers,
#collate_fn=collate_fn,
drop_last = True)
return train_loader
def cycle(iterable):
while True:
for x in iterable:
yield x
|