File size: 6,110 Bytes
4275cae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
from torch.utils import data
import numpy as np
from os.path import join as pjoin
import random
import codecs as cs
from tqdm import tqdm
import utils.paramUtil as paramUtil
from torch.utils.data._utils.collate import default_collate


def collate_fn(batch):
    batch.sort(key=lambda x: x[3], reverse=True)
    return default_collate(batch)


'''For use of training text-2-motion generative model'''
class Text2MotionDataset(data.Dataset):
    def __init__(self, dataset_name, feat_bias = 5, unit_length = 4, codebook_size = 1024, tokenizer_name=None):
        
        self.max_length = 64
        self.pointer = 0
        self.dataset_name = dataset_name

        self.unit_length = unit_length
        # self.mot_start_idx = codebook_size
        self.mot_end_idx = codebook_size
        self.mot_pad_idx = codebook_size + 1
        if dataset_name == 't2m':
            self.data_root = './dataset/HumanML3D'
            self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
            self.text_dir = pjoin(self.data_root, 'texts')
            self.joints_num = 22
            radius = 4
            fps = 20
            self.max_motion_length = 26 if unit_length == 8 else 51
            dim_pose = 263
            kinematic_chain = paramUtil.t2m_kinematic_chain
        elif dataset_name == 'kit':
            self.data_root = './dataset/KIT-ML'
            self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
            self.text_dir = pjoin(self.data_root, 'texts')
            self.joints_num = 21
            radius = 240 * 8
            fps = 12.5
            dim_pose = 251
            self.max_motion_length = 26 if unit_length == 8 else 51
            kinematic_chain = paramUtil.kit_kinematic_chain

        split_file = pjoin(self.data_root, 'train.txt')


        id_list = []
        with cs.open(split_file, 'r') as f:
            for line in f.readlines():
                id_list.append(line.strip())

        new_name_list = []
        data_dict = {}
        for name in tqdm(id_list):
            try:
                m_token_list = np.load(pjoin(self.data_root, tokenizer_name, '%s.npy'%name))

                # Read text
                with cs.open(pjoin(self.text_dir, name + '.txt')) as f:
                    text_data = []
                    flag = False
                    lines = f.readlines()

                    for line in lines:
                        try:
                            text_dict = {}
                            line_split = line.strip().split('#')
                            caption = line_split[0]
                            t_tokens = line_split[1].split(' ')
                            f_tag = float(line_split[2])
                            to_tag = float(line_split[3])
                            f_tag = 0.0 if np.isnan(f_tag) else f_tag
                            to_tag = 0.0 if np.isnan(to_tag) else to_tag

                            text_dict['caption'] = caption
                            text_dict['tokens'] = t_tokens
                            if f_tag == 0.0 and to_tag == 0.0:
                                flag = True
                                text_data.append(text_dict)
                            else:
                                m_token_list_new = [tokens[int(f_tag*fps/unit_length) : int(to_tag*fps/unit_length)] for tokens in m_token_list if int(f_tag*fps/unit_length) < int(to_tag*fps/unit_length)]

                                if len(m_token_list_new) == 0:
                                    continue
                                new_name = '%s_%f_%f'%(name, f_tag, to_tag)

                                data_dict[new_name] = {'m_token_list': m_token_list_new,
                                                       'text':[text_dict]}
                                new_name_list.append(new_name)
                        except:
                            pass

                if flag:
                    data_dict[name] = {'m_token_list': m_token_list,
                                       'text':text_data}
                    new_name_list.append(name)
            except:
                pass
        self.data_dict = data_dict
        self.name_list = new_name_list

    def __len__(self):
        return len(self.data_dict)

    def __getitem__(self, item):
        data = self.data_dict[self.name_list[item]]
        m_token_list, text_list = data['m_token_list'], data['text']
        m_tokens = random.choice(m_token_list)

        text_data = random.choice(text_list)
        caption= text_data['caption']

        
        coin = np.random.choice([False, False, True])
        # print(len(m_tokens))
        if coin:
            # drop one token at the head or tail
            coin2 = np.random.choice([True, False])
            if coin2:
                m_tokens = m_tokens[:-1]
            else:
                m_tokens = m_tokens[1:]
        m_tokens_len = m_tokens.shape[0]

        if m_tokens_len+1 < self.max_motion_length:
            m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx, np.ones((self.max_motion_length-1-m_tokens_len), dtype=int) * self.mot_pad_idx], axis=0)
        else:
            m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx], axis=0)

        return caption, m_tokens.reshape(-1), m_tokens_len




def DATALoader(dataset_name,
                batch_size, codebook_size, tokenizer_name, unit_length=4,
                num_workers = 8) : 

    train_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, codebook_size = codebook_size, tokenizer_name = tokenizer_name, unit_length=unit_length),
                                              batch_size,
                                              shuffle=True,
                                              num_workers=num_workers,
                                              #collate_fn=collate_fn,
                                              drop_last = True)
    

    return train_loader


def cycle(iterable):
    while True:
        for x in iterable:
            yield x