Spaces:
Runtime error
Runtime error
File size: 7,859 Bytes
4275cae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import os
import torch
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from os.path import join as pjoin
from torch.distributions import Categorical
import json
import clip
import options.option_transformer as option_trans
import models.vqvae as vqvae
import utils.utils_model as utils_model
import utils.eval_trans as eval_trans
from dataset import dataset_TM_train
from dataset import dataset_TM_eval
from dataset import dataset_tokenize
import models.t2m_trans as trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
warnings.filterwarnings('ignore')
##### ---- Exp dirs ---- #####
args = option_trans.get_args_parser()
torch.manual_seed(args.seed)
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
args.vq_dir= os.path.join("./dataset/KIT-ML" if args.dataname == 'kit' else "./dataset/HumanML3D", f'{args.vq_name}')
os.makedirs(args.out_dir, exist_ok = True)
os.makedirs(args.vq_dir, exist_ok = True)
##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
##### ---- Dataloader ---- #####
train_loader_token = dataset_tokenize.DATALoader(args.dataname, 1, unit_length=2**args.down_t)
from utils.word_vectorizer import WordVectorizer
w_vectorizer = WordVectorizer('./glove', 'our_vab')
val_loader = dataset_TM_eval.DATALoader(args.dataname, False, 32, w_vectorizer)
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
##### ---- Network ---- #####
clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False, download_root='/apdcephfs_cq2/share_1290939/maelyszhang/.cache/clip') # Must set jit=False for training
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
clip_model.eval()
for p in clip_model.parameters():
p.requires_grad = False
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate)
trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code,
embed_dim=args.embed_dim_gpt,
clip_dim=args.clip_dim,
block_size=args.block_size,
num_layers=args.num_layers,
n_head=args.n_head_gpt,
drop_out_rate=args.drop_out_rate,
fc_rate=args.ff_rate)
print ('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.eval()
net.cuda()
if args.resume_trans is not None:
print ('loading transformer checkpoint from {}'.format(args.resume_trans))
ckpt = torch.load(args.resume_trans, map_location='cpu')
trans_encoder.load_state_dict(ckpt['trans'], strict=True)
trans_encoder.train()
trans_encoder.cuda()
##### ---- Optimizer & Scheduler ---- #####
optimizer = utils_model.initial_optim(args.decay_option, args.lr, args.weight_decay, trans_encoder, args.optimizer)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
##### ---- Optimization goals ---- #####
loss_ce = torch.nn.CrossEntropyLoss()
nb_iter, avg_loss_cls, avg_acc = 0, 0., 0.
right_num = 0
nb_sample_train = 0
##### ---- get code ---- #####
for batch in train_loader_token:
pose, name = batch
bs, seq = pose.shape[0], pose.shape[1]
pose = pose.cuda().float() # bs, nb_joints, joints_dim, seq_len
target = net.encode(pose)
target = target.cpu().numpy()
np.save(pjoin(args.vq_dir, name[0] +'.npy'), target)
train_loader = dataset_TM_train.DATALoader(args.dataname, args.batch_size, args.nb_code, args.vq_name, unit_length=2**args.down_t)
train_loader_iter = dataset_TM_train.cycle(train_loader)
##### ---- Training ---- #####
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, clip_model=clip_model, eval_wrapper=eval_wrapper)
while nb_iter <= args.total_iter:
batch = next(train_loader_iter)
clip_text, m_tokens, m_tokens_len = batch
m_tokens, m_tokens_len = m_tokens.cuda(), m_tokens_len.cuda()
bs = m_tokens.shape[0]
target = m_tokens # (bs, 26)
target = target.cuda()
text = clip.tokenize(clip_text, truncate=True).cuda()
feat_clip_text = clip_model.encode_text(text).float()
input_index = target[:,:-1]
if args.pkeep == -1:
proba = np.random.rand(1)[0]
mask = torch.bernoulli(proba * torch.ones(input_index.shape,
device=input_index.device))
else:
mask = torch.bernoulli(args.pkeep * torch.ones(input_index.shape,
device=input_index.device))
mask = mask.round().to(dtype=torch.int64)
r_indices = torch.randint_like(input_index, args.nb_code)
a_indices = mask*input_index+(1-mask)*r_indices
cls_pred = trans_encoder(a_indices, feat_clip_text)
cls_pred = cls_pred.contiguous()
loss_cls = 0.0
for i in range(bs):
# loss function (26), (26, 513)
loss_cls += loss_ce(cls_pred[i][:m_tokens_len[i] + 1], target[i][:m_tokens_len[i] + 1]) / bs
# Accuracy
probs = torch.softmax(cls_pred[i][:m_tokens_len[i] + 1], dim=-1)
if args.if_maxtest:
_, cls_pred_index = torch.max(probs, dim=-1)
else:
dist = Categorical(probs)
cls_pred_index = dist.sample()
right_num += (cls_pred_index.flatten(0) == target[i][:m_tokens_len[i] + 1].flatten(0)).sum().item()
## global loss
optimizer.zero_grad()
loss_cls.backward()
optimizer.step()
scheduler.step()
avg_loss_cls = avg_loss_cls + loss_cls.item()
nb_sample_train = nb_sample_train + (m_tokens_len + 1).sum().item()
nb_iter += 1
if nb_iter % args.print_iter == 0 :
avg_loss_cls = avg_loss_cls / args.print_iter
avg_acc = right_num * 100 / nb_sample_train
writer.add_scalar('./Loss/train', avg_loss_cls, nb_iter)
writer.add_scalar('./ACC/train', avg_acc, nb_iter)
msg = f"Train. Iter {nb_iter} : Loss. {avg_loss_cls:.5f}, ACC. {avg_acc:.4f}"
logger.info(msg)
avg_loss_cls = 0.
right_num = 0
nb_sample_train = 0
if nb_iter % args.eval_iter == 0:
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model=clip_model, eval_wrapper=eval_wrapper)
if nb_iter == args.total_iter:
msg_final = f"Train. Iter {best_iter} : FID. {best_fid:.5f}, Diversity. {best_div:.4f}, TOP1. {best_top1:.4f}, TOP2. {best_top2:.4f}, TOP3. {best_top3:.4f}"
logger.info(msg_final)
break |